

THE ZX80 MAGIC BOOK

For the Integer (4K ROM) ZX80 with 1-4K RAM

Contents

2 Russian Roulette
Matches

Humber Guessing A & 3
Dice(s}

Horse Race

Buzz~-Rord

Moon Lander

o N U F Ak

Higher~Lower
10 Hammursgbi
12 Nibbler, Measles

13 RND
14 Hexpawn
17 Qthellio

20 Dscimal Peeker

21 Hex Peeker

22 Animals

25 Sums Tester

26 More Sums

27 Weekday

28 HMusic

23 Plotting

25 Creating a Progranm
4O Assorted Tips

41 Debugging

L2 Converting COther BASICs
48 How it Works

52 Using USR

Bh Micromon

56 Improving the Picture
58 Memory Map

59 Adding Memory & I1/0

© TIMEDATA Lid.

Edition 1 ; Jume 1980
Edition 2 ; September 1980
Bdition 3 ; October 1980

1

Russian Roulette Matches

I don't want to set the worlid on Tire.

b Matches is a simplified form of NIM, Starting with a
single row of between 21 and 32 matches, the player and
P the computer take it in turns to remove 1,2 or 3 matches.
The one left with the last mateh is the loser.
B
(X -]
oo 10 REM MATCHES
20 RANDOMISE
100 LET M = 20 + RD(12}
110 PRINT "§E TAKE TURNS TO REMOVE"
120 PRINT "1,2 OR 3 MATCHES"
_ 130 PRINT "THE OFE LEFT WITE THE LaSTH
14G PRINT "MATCH LOSESH
150 PRINT
Iz a game for two or more players who take turns to place a 200 FOR L = 3 T0 L
revolver loaded with just ome bullet to their heads and pull 210 FOR K = 1 TO o
the trigger. The game is over when one player refuses to 220 IF L = 1 THEN PRINT "m;
take his turn, or when the revolver fires. MNW %wa M 1 THEN PRINT wmm,
To pull the trigger, press NEWLINE, To quit, preas N then mmo PRINP
HEWLIRE. 250 NEXT L
260 PRINT
W T SS1AN ROULEITE 300 PRINT M;" MATCHES, YOUR TURN®
100 PRINT WIHIS I5 RUSSIAN ROULETTEM P et o o A0 makE o
110 PRIRT . :
120 PRINT "YOU HAVE A REVOLVERW 230 INPUT 1
130 PRINT "IT HAS 5 EMPTY CHAMBERS 34O IF T = M THEN GO 20 500
14G PRINT ™AND ONE LOADED ONE"
150 PRINT
160 PRINT "DQ YOU WANT TO PULL THE TRIGGER %v WMM WW@HWVW mw.:wwmﬂu, OR T TR G0 10 330
e SEUT 12 570 IF ¥ = 1 THEN GO TO 500.
190 IF CODE(IA)=CODE('N") THEN GO T0 500 el Sl LS R 5 ‘
200 paptyt o 200 k20 TF NOT R = 1 THEN LET C = R 4 3 = 4 * ((R+3)/4)
LEO LET M = M ~ C
300 IF RND(6)=1 THEN GO0 TO 400 a
370 PRIND MeooeoLt Ohe 44O TF M = 0 THEN GO 70 600
320 PRINT : L60 PRINT "YOU TOOK ;1
330 PRINT 470 PRINT "S0 I TOOK ";C
240 PRINT 480 PRINT
350 PRINT 490 GO TO 200
360 PRINT 500 CLS
370 G0 TO 150 510 PRINT 1T wopv
LOO PRINT "BANG ~ YOU ARE DEaDH 520 maowu
410 PRINT : 259 oo
420 PRINT ,CHRE(3) .
430 PRINT ,CHRE(2);CHRE(C);CHRE(130) 610 PRINT ™YOU WON™

440 PRINT ,CHRE(2); CHRA(Q) ; CHRF(130)

450 PRINT ,CHRZ(128);CHRE(128);CHRE(128);CHRE(3);CHRE(128)
460 STOP

500 PRINT ,MCHICKEN®

2 | 3

Number Guessing A & B

%

10 REM NUMBER GUESSING 4

20 RANDOMISE

30 LET N=RND(9)

40O CLS

50 PRINT HI AM THINKING OFt

60 PRINT A NUMBER FROM 1 TO g
70 PRINT * YOU HAVE 5 GUESSESY

80 PRINT 2
90 FORK = 1 T0 5 4
100 INPUT T

110 PRINT I;» I8
120 IF I = N THEN GO0 TC 200
120 PRINT "WRONG"

140 WEXT X

150 PRINT

160 PRINT "IT WAS ";N

170 STOP

200 PRINT "CORREGTY

In both of the games on this page the computer picks a random

number which the player tries to guess.

Game A gives the player 5 chances to guess the number, which
is in the range 1 to 9, Uinless the player has considerable
ESP talent, he should only be able to win about half of the
games played.

In conirast, game B allows the player 7 chances to guess a
number from 1 to 99, but tells the player whether each
(uneuccessful) guess is too high or too low; which is enough
information to allow the correct number to be deduced every
game,

I

10 REM KUMBER GUESSING B
20 RANDOVMISE

30 LET N=RND(99)

30 CLS

5C PRINT "I AM THINKIFG OFn

60 PRINT "A NUMBER FROM 1 TO ggn

70 PRIRT MYOQU HAVE 7 GUESSESY
80 PRINT
9 90 FOR K=l TO 7
100 INPUT I
110 PRINT I;n IS ny
120 IF I=N THEF GO TO 200

130 IF I<N THEN PRINT "T00 SMALLM

140 IF IDN THEN PRIET "TOO BIG!
150 NEXT K

160 PRIWT

170 PRINT "IT WAS ;N

180 srop

200 PRINT YCORREQTM

4

Dice(s)

1 REM DICE TEROWER
5 RANDOMISE
10 LET N=RND{&)
20 FOR Lzl TO ©
%0 PRINT v ",
40 GO 8UB 1000
50 PRINT
60 WEXT L
62 PRINT
6% PRINT
65 PRINT "NEWLINE TO THROW"
70 INPUT AZ
80 CLS
90 IF A="" THEN GO TO 10
100 570P
1000 IF L>1 ARD L<g THEN PRINT CHRE(130);
1010 GO TO 10204+5+1,
1025 PRINT ‘aldadalaes]™ :
1026 RETURN
1030 PRINT = g
1031 RETURN
1035 IF B<3 THEN GO TG 1070
1036 IF E=3 THEN GO TO 1075
1037 @0 TO 3080
1040 GO TO 10%0
1045 IF N=(H/2)*2+1 THEN GO T0 1085
1046 IF H=i THER GO TO 1030
107 GO TO 1080
1050 GO TO 1030
1055 IF W<3 THEN GC TO 1070
1056 IF W=3 THEN GO TO 1090
1057 GO TO 1080
1060 G0 TC 1030
1065 LET LE=CHRZ(131)
1066 PRINT "m Ly L4;LE;LE; LE; 1E; LE; mem;
1067 RETURN

1070 PRINT ® o
1071 RETURN
1075 PRIRT n & o";
1076 RETURN
1080 PRINT "w ® m@";
1081 RETURN
1085 PRINT ®* m g
1086 RETURN
1090 PRINT " ® o
1091 RETURN

To throw twoe die at once, change iines 10 - 55 tog

10 LEY N1=R¥D(E)
15 LET N2=RNDB(6)
20 FOR L=l TO 9
25 LET N=N1

30 PRINT n wy
35 GOSUB 1000
LO LET §=H2

45 PRINT m n,
50 GOSUB 1000
55 PRINT

Horse Race

This program displays two horses, which advance towards
the finishing line every time NEWLINE is pressed.

The main body of the program is lines 500 -~ 640 which
display the track, then wait for NEWLINE to be pressed
before calculating the new positions.

Lines 1000 - 1110 are =z subroutine which displays one
horse and the section of the finishing line directly
ahead of him. Lines 2000 - 2060 display the section of
track and finishing line inbetween the two horses.

Their rate of progress can be changed by altering lines
620 and 630, and artistically minded programmers may
care to experiment with lines 1030 - 1060 to achleve a
more pleasing representation of a horse and rider.

1 REM HORSE RACE

100 RANDOMISE

110 LET Nl=l

120 LET Hpe=l

500 CLS

510 LET ¥=N1

520 G0 SUB 1000

530 G0 SUB 2000

S50 LET N=Nz

550 GO SUB 1000

560 PRINT

570 IF Ni>27 OR N2»27 TEEN G0 10 700
600 PRINT "NEWLINE TO MOVE®

610 INPUT A8

620 LET N1=N1+R¥D(5)

630 LET N2=Nz2+RND(5)

GH0 GO TO 500

700 PRINT MEND OF RaACE"

710 PRIKT "NEWLINE FOR ANOTHER"
720 INPUT A%

730 TP AZ="" THEN RUN

7LO STOP
1000 1F N>28 THEN LET N=28

1005 FOR Rel TC L

1010 FOR I=1 TO 28

1020 IF NOT {I=N) THEN GO TO 1070
10350 IF R=l THEN PRINT " & ",
1050 IF B=2 THEN PRINT " ";CHRE{135);CHRE(1Z3):
1050 IF R=3 THEN PRINT CHRE(128);CHRE(128);"®m";
1060 IF R=h THEN PRINT "m7;CHRE(130);n #;
1070 IF NOT (I=lf) THEN PRINT " m;
1080 NEXT 3

1090 PRINT wgn
1160 BEXT R
1110 RETURN
2060 FOR R=1 TO 3
2010 FOR I=1 T¢ 30
2020 PRINT ©# ny
2030 NEXT I
2050 PRINT ngn
2050 NEXT R
2060 RETURN

Buzz -Word

An aid for the busy engineer; BUZZ-WORD generates lmpressive
sounding phrases for use in reperts to higher management.

Lines 120170 present three strings in turn fo the subroutine
1000~1210. Each string contains L suitable words or phrases
ezch terminated by a *.

Line 1000 chooses one of the four woerds or phrases.

1% the first one is chosen, the program goes immediately to
lines 1100-1210 which print all the characters in the string
up to=- but excluding- the next *,

If line 1000 results in N being greater than 1, then lines
1020-1070 remove all of the characters from the string A8 up
te and including the N-1 th, ¥, The program then goes to line
1100 to print the chosen word or phrase.)

If you wish to change the choice of words in the program;

~ Lines 120, 140 and 160 must each contaln an egual number
of words or phrases, each terminated by *,

- Line 1000 must reflect the number of words or phrases in
lines 120, 140 and 160C.

- Each word or phrase should be ne longer than 10 characters
to prevent the resulting print-out being longer than one
display line.

10 REM BUZZ-BORD
100 CLS
110 RANDOMISE
120 LET A% = "SLOBAL*PARALLEL*FEASIBLE~LATERAL#"
130 GOSUB 1000
140 LET AF = MSILICON+=TOP DOWH* PRAGMATIC*#MCDULAR:M
150 GOSUR 1000
160 LET A% = "CONCEPT+=SCENARIO*PROJECTION*PHASES"
170 GOSUB 1000
180 PRINT
190 PRINT)
200 PRINT “HIT NEWLINE FOR ANOTHER PHRASE"
210 INPUT Ag
220 IF A% = ®" THEN GOTO 100
230 STOP
1000 LET N=RND(4)
1010 IF §-= 1 THEN G0 TO 1100 .
102¢ IF CODR(AZ) = CODE(#=n) THEN GO TQ 1050
1030 LET A% = TLZ{AL)
1040 GO TO 1020
1050 LET A% = TLE{AZ)
1060 LET ¥ = ¥ -~ 1
1070 GO TC 1010
110¢ IF CODE(AE) = CODE{("=%) THEN GOTO 1200
1110 PRINT CERE(CODE(AZ))};
1120 LET A3 = TLE{aZ)
1130 G0 TO 1100
1200 PRINT "
121C RETURN

Higher
= Lower

w@. Higher/Lower is played by ome person betting agsinst the

Moon Lander

\mw computer, He is given a starting stake of & 100.
For each play, the computer picks two numbers betwesen I and
99, displays the first, then asks the player to het any or
all of his money on whether the second number isg higher or
lower thar the first. A really successful player can break
the bank by amassing & 10,000 or more. The game will alsoc
stop when the player has no money left, or if he bets £ Q.
10 REM mH.mmmm\H_oﬂmw
100 LET P=100
110 RANDOMISE
120 LET N1=RND(99)
! 130 LET H2=RND(9%)
You are piloting a rocket landing on the Moon. { The =»*tyasx f 140 CLS
computer has failed again t!). At the start of the simulation 150 PRINT W1 HAVE CHOSEN 2 NUMBERS {1-99}"
you are 500 feet up, falling at 75 feet per second, and have 160 PRINT MTHE FIRST IS ™;N1
125 units of fuel, Every secomd you are given a display of 170 PRINT
your height, speed, and remaining fuel. You then have to 180 PRINT "IS THE SECOND NUMBER"
decide how much fuel %o burn during the next second to bring 190 PRINT "HIGHER (H) OR LOWER (L) 2"
you to a safe landing. If the speed shown iz negative, then 200 INPUT 18
you are travelling away from the surface of the moon. 210 IF Ig="" THEN meowmo o
SHET !
The program is straightforward, except for lines 300 - 360, www %M quzm: mem Mm 70 mwo
which approximate the complex equations needed for a proper 240 GO @oamoo
caleulation of your trajectory by using a simple formula 250 CLS
repeated at 1/10 second intervals. 550 PRINT "YOU THINE IT IS *;
270 IF Tg="H" THEN PRINT "HIGHERY;
1 REM MOON LANDER 250 IF Ig="Lt THEF DRINT WLOWER";
100 H_mm_ H=5000 260 PRINT " THAN ";N1
WWM Wm% Muwww 200 PRINT "YOU HAVE &";P
:h = L
310 PRINT "HOW MUCH DO YOU BET ?
200 CLS
220 INPUT B
mww memw MERIGHT SPEED FUEL BUR" 370 IF B0 THEN STOP
wmo FOR E=1 TO 15 ZL0 IF B>P THEN G0 TO 320
- = 30 TO 400
240 PRINT H/10,V/10,F, Wmm 1F H2=N1 THEN GO 10740
250 IF F>0 THEN INPUT R 370 IF Np>NL ARD I&="L® THEN GO T0 400
mmw wm%ﬂwmﬁ% LEL R=F 380 IF N2<N1 AND Ig="E" THEN GO TO 400
- %90 LET P=P+2*B
300 FOR T=1 0 10 00 CL3
310 LET H=H-V/ S..G..Emwo 510 PRINT "IT WAS ";N2;" YOU NOW HAVE &n;
320 IF Hal %ﬁw G0 T 5 120 IF P >0999 THEN G0 TO 500
330 LET V=V+5- ; 130 IF P=0 THEN GO TO 600
Www mea%w R 150 PRINT "HIT NEWLINE FOR ANOTHER RETM
= me 450 INPUT IZ
wwm wa%ommoo : 460 IF Ig="" THEN GO 70 120
470 STOP
510 LET V=ABS(V} " p - YOU HAVEM
520 IF V50 THEN PRINT "YOU CRASHED® S Mot A
530 IF V<51 AND V>20 THEN PRINT "A BUMPY LANDING" Wmo i :
540 IF V<21 THEN PRINT "& GOOD LANDING" 500 PRINT
550 PRINT ™AT ";V/10;" FEET/SEC! £10 PRINT “30RRYY
560 PRINT “WITH ©;F;" FUEL LEFTY

8 : 9

Hammurabi

You play the part of Hammurabi; king of ancient Sumaria, Each year
the computer tells you how big your kingdom is, how many subjectis
you have, and how much grain there is as a result of the harvest
and that stored from the previous year. You must then decide
whether to trade land for grain with your neighbouring kingdoms,
how much to allocate as food for the coming year, and how much
grain to use as seed,

This program needs 2K of memory.

Your subjects will die off 4f they don't get sufficlient food {about
15 bushels per. head per year); 1f you give them too much food then
the surplus is wasied. Bach year's harvest depends on the amount of
land avallable, the amoumt of grain allocated as seed, the number

of people to work the land, and =z large random factor (the weather 2).
Your kingdom is also subject to the plague about every sixth year,
and rats cam devastate your valuable grailnm stores.

Hammurabi is ome of the original computer games; the author can
remember seeing it played in the mid 1960%s. As set up here it is
extremely difficult to prevent your kingdom from ¢ollapsing around
you; if you wish to change the parameters then;

R is the number of bushels eaten by rats.

¢, the harvest, is affected by lines 640 & 650 as well as 710,

D is the number of deaths from starvation.

¥ is the number of births.

T is the number of deaths from the plague.

1 REM HAMMURABI
100 RANDOMISE
110 LET H=100
120 LET $=300C
130 LET A=1000
150 LET ¥=0
150 LET A#="0 HAMMURABI, EING OF SUMERIAM
200 PRINT AR
210 PRIET
22¢ PRINT "YOUR POPULATION IS5 ";H
230 PRIRT wYOU HAVE ;53" BUSEELS OF GRAINT
250 PRINT “YOU HAVE ";A:;" ACRES OF LaNDn
250 PRINT
%00 LET L=16+RND(8)
310 PRINT ®LAND I5 *;L3;" BUSHELS PER ACRE™
%20 PRINT ®HOW MANY ACRES WILL YOU BUY *;
320 INPUT 44
Zho IR AA*L > S THER G0 T0 3320
350 PRINT AA
400 IF AL > O THER GO TO 460
410 PRINT "HOW MANY ACRES WILL YOU SELL "
420 INPUT AA
430 IF A4 > A THEN GO TO 420
L0 PRINT A4
450 LET AA=-~AA
460 LET A=A+AA
L70 LET S=S5-I%AA
500 PRINT "HOW MANY BUSHELS FOR FOOD #;
510 IKPUT F
520 IF F> 5 THEN G0 TO 510
5%0 PRINT F
ShO LET S5=8~F
600 PRINT "HOW MANY BUSHELS FOR SEEDH
610 IKPUT P
620 IF P > 5 THEN GO T0 610
630 LET 8=5-P 10

640
650

700
710
720
730
740

760
770
780
790
800
810
815
820
825
830

BhO

845
850
860
870
880
885
890
900

IF P > 2*Ap THEN LET P=2*4
IF P > 25#H THEN LET P=25+*E

LET R=RND(5/2)-1

LET C=RND{1*P}

LET S=S+0-R

LET D=H-F/15

IF b <1 THEN LET D=0

LET W=H/10+RND(H/20)

LET HaH-D+N

LET T=0 .

IF RND(6)=3 THEN LET T=H/B+RND{H/3)
LET H-H-T

€LS

PRINT A8

PRINT

LET Y=Y+l

PRINT "YEAR ";{;" OF YOUR REIGN"

IF D>H/L4 OR R>S/4 OR T>H/L OR C< 4 THEN
PRINT “WaAS A BAD ¥EARM

IF D=0 AND R<5/10 ARD T=0 AND C>3*4 THEN
PRINT "WAS A4 GOOD YEAR"

PRINT

PRINT "RATS ATE ":R;" BUSHELS"

PRINT “YOU HARVESTED n;C;" BUSHELSM

PRINT K;" BABIES WERE BORN"

PRINT D;" PEOPLE STARVEDM

IF T>0 THEN PRINT 'f;" DIED OF PLAGEE"
IF >0 THEN G0 TO 21¢

PRINT "THAT IS THE END OF YOUR REIGNY

Nibbler

Tibbier is a shorter versiom of the fCheese Hibbler® program
in the ZX80C book. In this program the mouse gets a lump of
cheese every time, As with some other programs in this book,
it asks you %o press newline to comtinue; and the program
stops if you enter any character {(if line 300 gets anyihing
other tham a null string).

10 REM CHEESE WIBBLER

100 DM A(30)

110 RANDOMISE

140 LET Pg=" THIS IS THE CHEESE."
150 LET Qmu: EIT NEWLIRE TO LET"
160 LET R&=" THE MOUSE NIBRBLE ITn
200 CLS

21C FOR J=1 TO 3

220 FOR K=1 T0 10

230 LET BeK+10%(J-1)

240 IF A(B)=0 THEN PRINT "@";
250 IF A(B)=1 THEN PRINT * ";
260 WEXT X

265 IF J=1 THEN PRINT P2

27G IF J=2 THEN PRINT Q2

295 IF J=3 THEN PRIKT RE

280 NEXT J

Z00 INPUT I

310 IF NOT IZ="" THEN STOP

320 LET B=RND(30)

330 IF A{B)=l THEN GO T0 320

240 LET A(B)=1

350 GO TO 200

12

RND

80 many programs depend on the RND function, that it is worth
checking to see how randem it is.

Thig program does & number of RED(20) operations, then displays

a histogram of the result, The histogram has 20 bars, corres-
ponding to the numbers 1 -~ 20 , the length of each bar being
proporiional to the frequemcy with which RND{20) came up with
that number.

When the program has rum, and the SMWdomHmB is disgpiayed,
presging NEWLINE will run it zgain, adding the new values to
the previous ones.

The 'scores! are stored im the array A{20) by limes 110 - 140,
Lines 200-290 display the 20 line histogram, with Iine 245
ensuring that each bar cannot overflow the end of the screen.

10 REM RND FUNCTION

20 DIM A(20)

100 RANDOMISE
110 FOR E=1 70 50

120 LET H=RND(20)
130 LET A(E)=A{N)+1

140 FEXT ¥
200 CLS .
210 FOR K=l TO 20
220 IF K< 10 THZN PRINT " #;
2%0 PRINT K;n o
250 IF A(K)< 1 THER GO TO 280
245 IF A(K) > 29 THEN LE? A(K)=29
250 FOR P=1 TO A(K)
260 PRINT v
270 KEXT P
280 PRIFT
290 KEXT X
300 PRINT N"NEWLINE FOR MORED
%10. INPUT AZ
320 IF AZ="Y THEN G0 TO 100

Measles

Measles paimts the screen with randomly placed dots. If is a
‘trivial program, but pleasimg to those of a certaim age,

10 REM MEASLES
100 DI¥ A(128)
200 PRINT "HOW MANY SPOTS (1-100} 70
210 INPUYT K
220 IF K >100C THEN GO T0 210
2%0 IOR J=1 TO K
240 LET B=RED(128)
250 IF 4{B)=1 THEE GO T0 240
260 LET A(B)=1
290 NEXT &
300 CLS
230 FOR J=1 TO 192
320 IF A(J)=0 THEN PRINT n L
330 IF A{J)=1 THEN PRINT ng ¥
40 REXT J

13

/

Thigs program requires 3K of RaM,

Hexpawn is a simple board game played between the computer and a
human opponent on a 3%3 board.

At the start of the game each player has three pieces occupying
the row nearest to him. The pieces are similar to chess pawns,
and may elther be moved straight forwards into an empty square,
or diagonally forwards to take an opponents piece.

A player loses 1f he cannot move any of his pleces.

Hexpawn is interesting to the computer programmer as it has the
right level of complexity for experiments in computer 'learning!
techniques. In the program given here, the program remembers
each board position {or pattern) it encounters, and over the
course of many games it learns the best move to make from each
position, @iven emough practice 1t cam become very good.

When the computer has to make a move, it examines the array P()
to see if it has encountered that position belore, and if so
then it chooses at random ome of the moves held in P() against
that position. If the position is new, then it updates P() with
the new position and all possible legal moves it can make from
that position before choosing ome at random. If the computer
loses a game, then it erases the move that led it to the losing
position from P(}, and similarly when it realises that there
are no winning moves from a pariicular position, then it erases
the move that led to that position, Thus, after ercugh games,
P{) willl hold only winning moves.

The state of the board i1s held in the Y-element array B(); blank
squares as C, the computer's pieces as ~l,and its opponent's

as +l., The array M{) is psed to hold all legal moves at each
position; each move being represented as a 2 digit number e.g.
t25%, the first digit being the 'From' location, the second being
the location the plece is moved to. P() contains a list of eniries,
eack representing a board position and the non-losing moves from
it. The board position is encoded into a single positive number

to save storage space {(lines 4020-L0LO), the moves are stored as
negative numbers, and the list 1s terminafed by O,

1 REM HEXPAWE
2 EEt G0 TC 200 TO KEEP SKILL

100 pI¥ P{100)
110 DI¥ B(8)

120 DI¥ M(4)

130 LET #=1

140 LEF C=-1

200 REM START POS
210 FOR K=0 T0 2

14

220

LET B{(K)=C

LET B(K+3)=0

LET B(R+6)=H

NEXT K

GO SUB 1000

LET PN=0

REM H MOVE

PRIET "YOUR MOVE: FROM TOU
INPUT X

LET F=I/10

LET T=I-F*10

LET TYP=H

G0 SUB 2000

IF ERR-0 THEN G0 TO 310
LET B(F}=0

LET B(T)=H

GO SUB 1000

REX © MOVE

LET TYP=C

G0 5UB 3000 .

IF MOVE=-O THEN GO TO 600
PRINT “NEWLINE FOR MY MOVE"
IKPUT I8

GO SUB 4000

LET B(F)0

LET B{(T)=C

GO SUB 1000

REM C wON ?

LET T¥P=H

G0 SUB- 3000

IF MOVE-D THEN GO TO 300
PRINT "I WIRY

G0 10 620

a0 SUB 5000

PRINT "YOU HAVE wWONY
PRIRT

FRINT "NEWLINE FOR ANOTEZR GaME"
IRPUT 18

IF Ig="" THEN GO TC 200
STOP

BRM DISPLAY

CLs

FOR K=0 TO 2

LET X=%*K

PRINT X5 ":X+3;% ":X+2,
FOR ¥=0 TC 2

LET Z=B(X+Y)

IP 2=0 THER PRIKT * @Y,
IF Z=H THEN PRINT ® Hn;
IF Z=C THEN PRINT "™ Cn;
NEXT Y

PRIRT

PRINT

REXIT K

PRINT

RETURN

REM CHECE MOVE

LET ERR=1

IF F>8 OR T>3 THER RETURN

15

2030
2040
2050
2060
2070
2080
2090
2100
2110
3000
2010
2020
20%0
3040
3050
2060
3070
2080
32090
2100
3110
1O00
4010
35020
LOZ0
LOLO
4060
4070
4080
KO0
4095
200
4210
1220
4230
K240
La50
5260
L1270
L2680
4290
4300
4310
L3%20
330
R340

4360
4500
4410
4420
5430
4400
5450
5460
5000
5010
5020
5030
5040
5050
5060

IF B(T)=TYP THEN RETURN

IF ROT(B(F)=TYP) THEN RETURN

IF NOT(F/3~T/3=TYP) THEN RETURN
LET A=ABS(F-T)

IF A=3 AND B{T)=0 THEEN GO 'T0 2100
IF (A=2 OR A=4) AND B(T)=-TYP THEN S0 TC 2100
RETURN

LET ERR=0

RETURN

REM GET POSS MOVES

LET MOVE=0

FOR F=0 TO 8

IF HOT(B(F)=TYP) THEN GO 70 3100
FOR T«0 TO 8

GOSUB 2000

iF ERR>0 THEN GO TO 3090

LET M(MCVE)=T+10*F

LET MOVE=MOVE+L

NEXT 7

REXT F

RETURN

REM LOOK UP PO3 INK P{)

LET POS=0

FOR X=0 TO §

LET POS=B{K)+1+3*P05

NEXT K

FOR K=0 TO 100

LET PH=K

IF P(PN)=0 THEN GO TO 4400
IF P(PR)=POS THEN GO TC k200
NEXT K

REM FOUND I7

FOR K=l TOQ 10

IF P(PN+K)>~1l THEN G0 TO 4240
¥EXT K

IF K=1 THEN GC T0 4300
LET PN=PN+RHND{K-1)

LET F=-P(PE)}/10

LE? T=-P(PN)~10*F

LET PL-PN

RETORW

REM LOSIKG POS

80 SHB 5000

LET PL=100

LET MOVE=RND{MOVE)}~-1
LET F=M(MOVE)/10

LET T=M({MOVE)-10#F
RETURR

REM SAVE REW POS + MOVES
LET P(PW)=POS

FOR E=1 TO MOVE

LET P{PH+K)=-M({K-1)
NEXT K

LET PN=PN+RED{MOVE)

G0 TOQ 4260

REM DEL BAD MOVE

IF PL=100 THEN S0 TO 5050
FOR A=PL TO 99

LET P{A)=P(a+1)

NEXT 4

LET P{100)=0

RETURN

16

Othello

OTHELLC is played between the computer {C) and its human opponent
(HE) on an 8x8 board. At the start of the game each player has itwo
pieces in the centre area of the board,

H and C take turms to place a new piece in ome of the vacant
aquares sc as 0 ‘capture' one or more oppozents pieces,
Opponents pieces are captured if they lle on a horizontal,
vertical, or diagonal line terminated at ome end by the piece
just placed, and at the other by an existing piece belonging to
the player making the move, Pieces captured change type to that
of the player who has captired them,

Bach move must capture at least one piece, or else the player
must forfeit that move,

The game ends when all 6L squares have been filled, or when
neither player can move., The winner is the player with the moest
pieces at the end of the game,

The computer displays the board after every move. The human
player enters his move in terms of the row (1-8) and column
{A-H) of the desired square e.g. 84, or he may forfeit his move
by entering nothing {Jjust pressing the NEWLINE key). The program
will not accept invalid moves., The result of the move is then
displayed and the program walis for the playsr to press the NEW
LINE key before making its own move and displaying the result

of that, Entering "99" will end the game at any tinme.

ABCDEFGH ABCDEFGEH
i 1
2 2
3 3 H
I CH " HEH
5 EC 5 HC
6 6
7 7
8 8
Starting position After player chose 3P
17

The algorithm used by the prograz to calculate the computer's
pext move is a very baslc one, although it takes about 45 seconds
6 run, and allows the human player a good chance of winning.

Lines 100190 are a subroutine which returns the value S of
placing a new piece of type T (T= € or H) at point A{P}. If
F = 1 then the subroutine will also change the state of the
capiured pieces {lines 165-180}.

Lines 200-29% form a second subroutine whick displays the
current state of the board and calculates the scores SC and SH.

These two subroutines are placed early in the listing te speed
up the program,

Lines 300-3%80 calculate the optimum position for the computer
to piace its piece. If two positioms are equally good, lime 340
makes a random choice between them.

Lines §00-425 display the position afier the computer has made
its move.

Lines 500-595 get the player's move, check it for validity, then
display the result, Lines 600-620 wait for him to realise what he
has done hefore allowing the computer to proceed.

Lines 700-790 are only executed at the start of each game, to set
up the starting positions, The state of the board 1s sitored im
the 100 element array A(), which is itreated as a 10 x 10 array
comprising an 8 x 8 board with a border, The array H(} holds tke
8 posasible directions of movement from any square on the board.

1 REM OTEELLO
2 G0 10 700

100 LE? S=0

105 IF HOT A(P)=0 THENR RETURN
110 FOR I=0 7O 7

115 EET Q=P

120 LET K=1

125 LET 2=N(I}

130 LET Q=Q+2

135 IF A(Q)=0 THEN G0 TO
140 IF A{Q)=T THEN GO TO
145 LET £=K+1

150 G0 TO 130

155 LET S=S+K-1

160 IF F=0 THEN GO TO 185
165 POR K=l TO K

170 LET A(P+E*H(I))}=T

175 WEXT K

180 LET A(P)=T

185 REXT I

190 RETURN

200 LET SH=0

205 LET $C=0

210 PRINT

215 PRINT ,# ABCDEF G E"
220 FOR R=1 70 8

225 PRINT

230 PRINT ,R;

235 FOR V=1 7O 8

240 LET X=A(R+V*10)

18

245
250
255
260
265
270
275
280
285
290
295

300
305
310
315
320
325
230
335
L0
345
350
355
360
365
370
375
380

500
405
410
415
20
425

500
305
510
215

525
530
535
540
545

555
560
565
570
275
580
585
590
595

600
605
610
615
620

IF X=C THEN PRINT " Qw;
IF X=H THEN PRINT " Hw,
IF X=0 THER PRINT * @";
IF ¥=C THEN LET SC=S5C+1
IF %=H THEN LET SHeSH+]
NEXT V

PRINT

¥EIT R

PRINT

PRINT MYOU HAVE ";SH;" I HAVE ";SC
RETURN

LET M=0

LET Fz0

LET P=C

FOR R=1 TO 8

FOR V=1 TO 8

LE? P=R+10*V

GOSUB 100

IF S<M THER G0 TO 355
IF S+END{2)-1=M THER GO TO 355
LET M=8

LET X=P

NEXT V

NEXT R

IF MO THER 80 10 410
LET F=l

LET P=X

30SUB 100

LET V=X/10

PRINT "I CHOSE ";X-10%V;CHRE(V+37)
IF M=C THEN PRINT »I COULDNT MOVE"
GOSUB 200

IF HE="" AND M=C THEIN GO TO 1000
IF 5C+5H=6L THEN GO TQ 1000

PRINT "YOUR MOVE (E.€.84)7
INPUT HE

IF HE-'"" THEN 30 TO 585

IF HEg="9o" PHER GO TO 1000
LET R=CODE(HZ)-28

IF R<l OR R>8 THEE GO TO 505
LET AZ=TLZ(HZ)

IF AZ="" THEN GO TO 505

LET V=CODE(AZ)-37

IF V<1 OR V=8 THEN GO T0 505
LET P=R+10*YV

LET T=H

LET F=0

G0 SUB 100

IF 5=0 TEER GG TO 505

LET F=1

G0 SHB 100

CLS

G0 SUB 200

IT SC+SH=64 THEE GO TO 1000

PRINT "NEWLINE FOR MY MOVE®
INPUT A4

IF AZ="99" THEN GC TO 1000
CL3

GG TO 300

18

700 DIM A(99)
705 DIM N(7)

71¢ LET ¥(0)=11
715 LET N(1)=10
720 LET N(2)=9
725 LET N(3)=1
720 LET §(h)=ml
735 LET N(5)z-9
740 LET K{&)=w10
745 LET N(7)=-11
750 LET CO=-}

755 LET H=l

760 LET A(L4)=C
765 LET A{55)=C
770 LET A{L5)=H
775 LET A(54)=E
780 CLS

785 GO SUB 200
790 G0 TO 500

1000 IF 3C>SH THEN PRIKT "I WORY
1005 IF SC<SH THEN PRINT "CORGRATULATIONSY
1010 IF SC=S5H THEN PRIKT .. A DRAW -Y

Decimal Peeker

For those who have an overwhelming desire to examine the
contents of the ZX80 memories (RAM or ROM), the Decimal
Peeker will display the contents of 16 conseciitive memory
locations in decimal form (0=-255}. It also displays the
decimal values of consecutive pairs of bytes, assuming
them to represent a 16-bit signed integer having a
decimal value in the range -32768 to +32767.

When the program has found and displayed the 16 memory
locations, pressing NEWLINE will make 1t look at the
next 1%,

10 REM DECIMAL PEEKER
20 PRIRT "ADDRESS (DECIMAL)Y
30 INPUT A
100 CLS
110 PRINT #ADDR BYTE 1 BYPE 2 16 BITH
120 PRINT
200 FOR L=1 TO 8
210 LET B1=PEEK{A)
220 LET B2=PREK(A+1)
230 IF B2 > 127 THEN LET B3=z—(B2-128)*256-B1
240 IF B2 <128 THEN LET B3=B2#256+Bl
250 PRINT 4,B1,B2,B3
260 PRINT
270 LET Anp+2
280 NEXT L
300 PRINT
310 PRINT "EEWLINE FOR MOREM
320 INPUT A%
230 IF Ag="" THEN GO TC 100

20

Hex Peeker

For those more used to working with Hexadecimal representations
of memory contents, this program displays the values of 64
consecutive memory locatioms in Hex férm.

The program cannot handle addresses above 7FFFh, which cause an
arithmetic overfliow in line 50, but this is not likely to worry
the ZX80 user.

The dieplay consists of 8 lines {counted by variable L), each
containing the hex representations of 8 consecutive memory
locations, preceeded by the address of the first byte in the
line ; shown as h hex digits.

Hexadecimal representation splits each 8-bit byte into two
L-bit groups, and then represents each 4-bit group by a
character in the range 0-%,4-F (0 = *CO00', 9 = '1001°,
A= T1010', F = t1110').

Thus '11130000¢ {decimal 240) ig represented am FO,
Programmers working in machine language prefer to use
hexadecimal rather tham decimal to represemt the contents
of memory locations as it more directly represents the
states of the actual '"bits' in the byte,

% REM HEX PEEKER
10 PRIKT ™ ADDRESS (HEX)W
20 INPOT ag
20 LET A = ©
LO FORL = 1 T0 &
50 LET A = CODB{AZ) - 28 + 16 * 4
60 LET A% = TLE(AZ)
70 NEXT L
100 CLS
110 FORL =1 T0 8
120 LET P = 4/256
130 GO S¥B 1010
10 LET P = 4 - P * 256
150 GG SUB 1010
160 PRINT v 1,y
200 FOR A = A TC A + 7
210 LET P = PEEK(A)
220 GOSUB 1000
250 WEXT A
- 2440 PRINT
250 PRINT
260 EEXT L
300 PRINT "NEWLINE FOR MOREM
%10 INPUT AZ
z20 IP A = ™ THEN G0 TO 100
330 LIST
1000 PRINT ™ m;
1010 LET B = P/16
1020 PRINT CHRE(28+H);CERE(28+P-HE*16);
1030 RETURN

21

Animals

This program requires
2k bytes: of RAM,

You think of am animal, the computer them tries to find out
what it is by asking a series of questioms to which you
answer Y or B, If the computer doesn't kmow the animal you
are thinmldng of it will finally ask you what it ls, and also
for a question to distinguish this animal from the cthers.
These 'facts' are then stored so that the computer is better
informed mext time you play. To stop playing, enter N in
response to the question 'ARE YOU THINKING OF AN ANIMAL ?'.

If you have loaded the program from tape, then starting it
by G0 TO 1 instead of RUN will preserve the data base if had
when the program was saved,

Data iz stored in 25 striangs; A% to I8, which hold the
questions and answers, and in a 25 element numeric array
Q{24). Bach element of § holds information aboni the corres-
ponding strinmg { 9(0) for A8, Q(1) for BE etc.). If @() is
zero, then the string contzins the name of an animal. If the
string containms a guestion, then Q() = 100*K + Y where K =
the mumber {0-24) of the next string if the answer to the
question is N; ¥ = the number of the next string 1f the
answer is Y. See for example lines 110-160. F is the number
of the first unused (free) siring.

Tne program illustrates a straightforward - although rather long
winded - way of overcoming the lack of sirimg arrays im ZX80 LK
BASTC. Limes 1000-1049 allow the string ZZ to be stored in one
of 25 locations A¥ to Y8 by deing a GO SUB 1000 + 2%P , where P
is from O to 2h. Similarly, limes 1050 to 1099 allow the program
to retrieve the string by doing a GO SEB 1050 + 2%P,

Lires 110-170 make sure that the computer knmow about twe animals
to start with.

Lines 300~33%0 gel one of the 25 strings. If it ls a guestion then
it is printed, otherwise the program jumps to lime 400 to ses ir
it has foumd the correct answer. If not, them lines 420-425 move
the name of the animal the computer thought it was to the first
free string {(F), then lines §30-465 ask you for the mame of your
animal, store it inm the next free string (F+2, see line 440}, and
ask for a question which is them stored (line 460).Lines L70-492
then determine a new value for Q{(P) corresponding to the new
guestion and amimal you have told the computer about,.

22

If limes 300-230 print a question - not the name of an animal -
then lines 340-370 calculate which string to get next, depending

on the answer

1
100
110
120
130
140
150

200
210
220
230
240

. 300
310
220
330
240

to the question.

REM ANIMALS

DIM Q{24)

LET AZ="DOES IT SwIM®
LET Bf="SPARROW"

LET CE="SHARK"M

LET Q(0)=102

LET Fu3

CL3S

PRINT "ARE YOU THIRKIRG CF AN ANTMAL v
LET P=O

INPUT 22

IF HOT CODE(ZE)=CODE("Y") THER STOP

CLS

G0 SUB 1050+2%P

IF Q{P)=0 THER 60 TO 400

PRINT 2g;" 2¢

IRPUT 22

LET E=Q(P)/100

LET P=Q(P)=100*N

IF CODE(Z8)=CODE{"N") THEN LET PN
80 TC 300

PRINT ™IS IT Ao ";Eg;% o4

INPUT 2.8

IF CODE(2Z8)=CODE("Y®) THER GO TC 200
IF F>2i THER GO 70 500

CLS

G0 SUB 1050+2+%P

G0 SUE 1000+2+%F

PRINT "IT WAS & 2"

IRPUT 28

CLS

PRINT "WHAT QUESTION DISTINGUISHES!
PRINT "a n:%8;

GO SUB 1002+2%F

GO SUB 1050+2%P

PRINT " FROM A ";2g€;" 2"

INPET %8

GO SUB 1000+2%P

GO SUB 1050+2%F

CLS

PRINT "FOR A ";28

PRINT “THE ANSWER WOULD BE 27
INPUT %8

LET Q(PF)=101#F+1

IF CODE(2£)=CODE("Y") THER LET Q(P)=Q(P)+99
LET Q(F)=0

LET Q(F+1)=0

LET F=F+2

a0 TO 200

PRINT "SORRY-MY MEMORY IS NOW FULL™

PRINT
G0 TO 210

23

1000
1001
1002
1003
1004
1005
1006
1007
3008
1009
1010
101
1e12
1613
1014
1015
1016
1017
31018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
160
1oLl
1042
1043
104k
1045
046
1047
1048
1049

LET A#=ZE
RETURN
LET B3=4g
RETURN
LET CE=%8
RETURK
LET DE=78
RETURN
LEY EZ=23
RETIRN
LET WNHN 2
RETURN
LET GE=Rg
RETURN
LET HA=2%
RETURE
LET IZ=2g
RETURN
LET Jg=28
RETURN
LET Kg-Z8
RETURN
LET LE=2¢
RETORN
LET Mg=%8
RETURN
LET NZ=78
RETU RN
LET Of=Zg
RETURN
LET PE=ZE
RETUERN
LET Q=18
RETURN
LET R@=28
RETURN
LET 58=78
RETURN
LET Tg-0%
RETTRK
LEY U8=2%
RETURN
LET Vg8=Z8
RETH RN
LET WE=Zg
RETURE
LET XB=7f
RETURN
LET YE=7§
RETURN

24

1050
1051
1052
1053
105k
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
3073
107k
1075
1076
1077
1078

1079

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
10095
1096
1097
1098
1099

LET Z8=48
RETUERR
LET ZZ=BZ
RETURN
LET ZZ=CZ
RETURN
LET 28=D%
RETURN
LET Z8«EZ
RETURN

LET Z8=F%

RETURK
LET 28=G%
RETURN
LET Z@=-HZ
RETORN
LET ZZ-138
RETURN
LET 28598
RETURN
LET Z8=Kg
RETORN
LET Zg=L#
RETURN
LET ZgzMg
RETORN
LET? Zg=Ng
RETURN
LET #8=08
RETURX
LET 2g=P#
RETURN
LET ZZ=08
RETURN
LET Z8=Rf
RETURR
LET Zf=58
RETURN
LET 28=7%
RETURN
LET Z4=T#
RETURN
LET 28=V3
RETURN
LET Zg=W8
RETURN
LET Z2#8=4g
RETURN
LEY 3£=-Y%
RETURK

Sums Tester

And now to prove that a computer has educational value;
SUMS TESTER provides an exercise in simple addition,

It poses 10 questions of the form A + B = ? , and displays
a running total of the number of correct answers. At the
end of the tem questioms, it also shows the total ftime
takern to answer them.

The program is based on the FOR - NEXT loop covering lines
130 to 490, Lines 300,310 set the ZX80 internal clieck to
zero when each question is displayed, and line 330 adds the
time taken to answer to the variable TIME, Since the ZXS80
internal clock is ineremented 50 times per second, TIME is
divided by 50 when printing out the total time taken in
line 510,

1 REM SUMS TESTER
160 RAKDOMISE
110 LET SCORE=0
120 LET TIME-0
130 FOR G=1 T0 10
140 PRINT

150 PRINT "PRESS NEWLINE FOR QUESTION "
160 INPUT AZ

200 CLS

210 LET A=RRD(99)

220 LET B=RND(29)

230 LET ANSWER = A+B

240 PRINT ,A;" + M;Byn o 20

300 POKE 16414,0
310 POKE 16415,0
320 INPUT ENTRY
%30 LET TIME=TIME+PEEK(16L1L)+PEEK »

220 1 T(16414) (16415)%256
510 IF ENTRY=ANSWER THEN GO TO 450

420 PRINT ENTRY:" IS WRONGN

53C PRINT “IHE CORRECT ANSWER IS "; ANSWER

450 GO TO 470

450 PRINT ENTRY;" IS CORRECT™

460 LET SCORE=SCORE+L

570 PRIFT

480 PRINT WYOUR SCORE IS NOW ";SCORE;™ OUT OF ":g
490 NEXT G ’
500 PRINT

510 PRINT "ALLTOGETHER YOU TOOK -

520 STOP s TIME/S0; " SECONDS™

25

More Sums Weekday

This program calculates the day of the week for any
date after 1500 AD,

Monday's child is fair of face,
Tuesdayte child is full of grace.
Wednesday's child is full of woe,
The basic version of SUMS TESTER only poses questions of Thursday's child has far to go.

gimple addition. The following meodifications will make it Friday's child is loving and giving,

cover simple subtraction, multiplication and division as Baturday's child works hard for a living,
well. ’ But the child that's bornm on the Sabbath day

Is bonny, blithe, and good, and ga¥.

Lime 210 now chooses at random whether the problem is to be
one of addition, subtraciion, multiplication or division,
and calls one of the subroutimnes (1000- , 2000 , 3000~ or
4000~) accordingly. Whichever subroutine is called does
the work of determining and displaying the problsm, and
alsc calculates the correct answer.

1 PRINT "DAY OF WEEK" 66 LET A=Y1*5+{D+E{M)+E)*y
10 DIM K(12) 68 LET W=(A~28%(4/28))/4+1
11 LET K(1)=0 IF M>2 THEN GO TO 82

The multiplication and division problems assume a knowledge 12 LET K(2)=3 LET LeX~l+4s((X-1)/1)
of the 12 times table, and won't ask trivial questions such 13 LET K(3)=3 IF Y1>0 THEN LET B=Y-4*(¥/L)
as 5 * 1= % 1h LET K(4)=6 iF L>0 THEN GO 70 82
15 LET R(5)=1 IF W=0 THEN LET W=6
16 LET K(6)=h LET §=W-1
Change 1line 210 tog 17 LET X(7)=5 IF ¥=0 THER LET ¥=7
210 GO SUB RND(4)*=1000 18 LET K(8)=2
19 LET K(9)=5 90 PRINT
Delete lines 220,230,240 20 LET K(10)=0 97 PRINT
Add the following; 21 LET K(11)=3 94 PRINT WIS A 3
22 LET E{12)}=5 96 GO SUB 98+2+W
1000 LET 4=RND(99) 98 STOP
1010 LET B=RND(99) ww wmwww WIEAR {(>1599}
WMWW WWM%MM%W!W+W.W.: = on 3L INPUT Y ’ 100 PRINT ¥SONDATY
Tt 50 = 36 IF Y <1600 THEN G0 T0 34 101 RETURN
1040 RETURN _ 102 PRINT "MORDAYY
2000 LET A=HED(99} 38 PRINT ¥
2010 LET B=RND(90) 40 PRINT moNTH (1-12) "3 Wom wwaﬂﬁ._ .
2020 IF B+2>A THER GO TO 2060 42 INPUT M mr IRT "TUESDAY
2030 LET ANSWER=A~B 4y IF ¥<1 OR M>12 THEN GO TO 42 u m RETURR "
2040 PRINT A" - "B, LI TH - L6 PRENT M 106 PRINT "WEDNESDAY
2050 RETURN 50 PRINT "DAY (1~31) n; 107 RETURR .,
2010 LET B=RND{11)+1 54 IF D<1 OR D>31 THEN G0 TC 52 109 RETGRN
3020 LET ANSWER=A*B mm PRINT D
7030 PRINT,A;" TIMES ";By" = 2" LET ¥1=Y¥-100*(7/10¢) 110 PRINY "FRIDATH
%0LO RETURR 61 LET X=Y/100-15 111 RETURN
LOOO LET A=RND{12) 62 LET A=3+Xn21 112 PRINT "SATURDAT"
4010 LET ANSWER=RND(11)+1 6l LET Ra(A-28%(4/28))/k 133 RETORK :
5020 PRINT (ANSWER®A;™ / Myaph = 20
4030 RETURN

26

27

This program lets you store a short tume in RAM and pilay
it out tc a tape recorder or amplifier connected to the
ZX80's 'MIC' jack socket,

The program runs ot s machine with 2k bytes of RAM, and car
store a sequence of up to 233 'parta’, each 'part® being
elther a single note or a quiet periocd between notes,

The paris may be entered or updated im any order, but the
progran plays out the tune by startisg with part 1, then
continuing with parts 2,3 efc until the end of the tune is
reached,

For each part you must enter a Time; represented by amy
sumber in the rangs 1 to 255, which defines how long that
note or pause will last. A "Time' of O signifies the emd of
tke tune.

A 'Hote! number has also %o be entered for each part. The
value O gives a silent peried, while walues from 1 to 255
give differing frequencies; the higher values giving the
lower notes.

To use the program, first work out the 'parts', and their
associated Time and Note valuss; as in the exesmples. Then
Run the program to enter the values.

For each part, the program will display;
PART (1-233, O=PLAY) n

where n 48 1 when you first run the program, and thereafter
is one greater than the pumber of the part previcusly
entered., If n i8 the pumber of the part you wish to enter
or change, just press NEWLINE, otherwise enter the
reguired part number. The display will then show;

TIME {1-255, O=EED) x

where x is the walne that was previously stored for this
part. Enter the desired Time value, or Jjust press NEFLINE
if you don't want to change the gld value. The program
will ther display;

28

s

-

BOTE (1-255, O=QUIET) ¥

where y 1s the value previously stored. This may be
changed or lefi with the same value by either entering
the new value or just NEWLINE,

When all parts of the tume have been entered, then it can
be played by entering a ‘part number' of 0, Gulet periods,
each lasting for a few seconds, are generated before and
after playing the tune (by lines 81,82 & 84,85) to separate

the tune from the TV synchromisatlon noise normally produced
by the ZX80. :

When the tune has beer played, then the message
ENTER 1 TO QUIT, O PO XEEP TUNE

will appear. 1f the tune is kept, it may be amended by
just entering the new values for the parts to be changed.
If the program is saved on taps after storimg a tene, then
the tune will be saved along with the program and on re-
loading the program, the tune may be kept by starting the
program with G0 P0 5, rather than RUW,

1 REM MUSIC
2 DIM A(255)

5 LET A=PEEK(16392)+PEEE(163G3)}*256+2
10 LET a{0)=11009
11 LET A{1)=230%4
iz LET A{2)=62
13 LET A(3)=17955
15 LET A{4)=-14152
15 LET A(5)=22051
16 LET A{6)=10426
17 LET a{7)=71%0
18 LET A{8)=17355

19 LET 4(9)=1064
20 LET A(10)=211
21 LET A{11)=1048
22 LET A(12)=219
23 LET A(13)=62
2 LET A(1h)=-18421
25 LET A{15)=-6616
26 LBT A(16)=8213
27 LET A{17)=6393
28 LET A(18)=3046
29 LET pmpwwuuc:m:
30 LET A{20)=-deefids 3-
31 LET 4(21)}=-8168 MNMNL
35 LET Pal
40 CLS
41 PRINT "PART {1-233, O=PLAY) ;P
42 @0 SUB 100
4% IF X <0 THER GO TO 50
4iy IF X=0 THEN GO TO 80
45 IF X > 233 THEF GO TO 42
L4 LET Px=X
47 CLS
48 PRINT "PART (1-23%, O=PLAY) ;P
50 LET X=PEEK{A+42+25P) i
51 PRINT "1IME (1.255, O=ERD) *;%;m W
52 G0 SUB 100

29

~F

5% IF X <O THEN PRINT

5, IF X <0 THER G0 T0 60 % D
55 IF X>255 THEF G0 TO 52

56 PRINT X

s POKE A+h2+2%P, X%

58 IF X=0 THEW @0 TO 70

§0 LET X=PEEK(A+43+2*P)

61 PRINT "NOTE (1-255, O=QUIET) ";X
62 G0 SUB 100

€3 IF X<0 THEN GO TO 70

&4 IF X>25%5 THEN GO TC 62

65 POKE A+L3+2%P,X

70 LET P=P+l

71 G0 TO LO

80 CLS

81 POR %=1 TO 500

82 NEXT X

83 LET X=USR(A)

84 FOR X=1 10 500

85 NEXT X

86 PRINT YENTER 1 TO QUIT, O T¢ KEEP TUNE"
87 INPET X%

88 IF X=0 THEN GO TO 35

100 LET X=0

101 INPUT X8

102 IF Xg="" THEN LET X=-1
103 IF XA="" THER RETURN
104 LET 5=X3 ODELLE) 2B
105 LET X8=TLA(XE
Hommcaowou

Notes

The system of tuning known as tequal temperament' has been
uged on keyboard and fretted instruments since the 16th
century. In this system an octave is divided into twelve
equal intervals or 'memitones’. The ratliec between the
frequencies of two notes one semitone apart ig therefere
equal to the twelfth root of 23

f

=L . o] 2 = 10594631

n

Ugipg the divisiom ratios from 1 %o 255 provided by MUSIC,
a set of rules can be derived which are good approximatlons
to the familiar equal tempered scale. Table 1 shows Jjust
suach a sequence covering two octaves, based on the lowest
note cbtaimable, which is approximately F#,

The second column of Table 1 shows the 'Note' mumber to be
entered; the third column shows the equal tempered interval
required and the fourth columm shows the actual interval
obtained, It will be noted that the accuracy of the approx-
imation gets worse at higher frequencies. Transposition can
easlily be achieved by offseting tha first column by the
desired dinterval. ’

30

s o
100 LeT Y= W {gr CoDE ..awv

- 1f

tROTE! Regulred Achleved

s 255 1.0000 1.0000
e 2h1 1.059% 1.0581
a# 227 1.1224 1.12%3
A 214 1,1892 1.1915
A¥ 203 1.2599 1.2561
B 191 1.3348 1.3%51
¢ 180 1.5142 1.4166
v 170 1.4983 1.5000
b 161 1.58%7k% 1.58%8
p¥* 151 . 1.6818 1.6887
E 143 1.7818 1.7832
b3 135 1.8877 1.8884
s 127 2.0000 2.0078
4] 120 2.1189 2.1250
a¥# 113 242449 2.2566
A 107 2.3784 2.3%831
A% 101 2.5198 2.5247
B 96 2.6696 2.6562
G 90 2,828, 2.8333
c# 85 2.9966 %.,0000
D 80 3.1748 %.1875
¥ 76 3.3636 3.3552
E 72 3.5636 3.5417
¥ 68 5.7754 3.7500
F# 6l 4. 0000 3,980

—— g e

be uHmng..houmwn wmﬁmmm of this type may be associated with
any mote and give rise to a staccato effect. For faster tempos
decrease the above figures, keeping the same ratles.

Machine code

The notes are generated by a machlne language routine which
takes the Note and Time values loaded by the BASIC progran
inte the array A{} space. Lines 10 to 31 of MUSIC actually
load this machine code into RAM - as described in the
tUsing BSR' section of this book - then lime 83 runs it.

The machine language routine used is listed on the fellowing
page. It generates the tone by flipping the ZX80's SYRCH
iine at a rate determined by the tNote' value stored in RAM.

31

01 2B 00
09
3E OC
23
L&
B8
c8
2%
56
B&
28 16
e
CB 43
28 O
D% 00
18 04
DB 00
3E 00
0B
B3
28 E6
15
20 Fo
18 ES
OB
B
28 DD
00
18 0
Examples
PART TIME NOTE
1 240 90
2 240 107
3 250 135
4 240 180
5 80 181
6 B0 143
7 80 135
8 160 161
g 80 135
10 240 180
11 220 180
12 20 0
13 a0 120
14 250 90
15 250 107
16 2L0 135
17 80 161
18 80 143
13 80 135
20 150 120
21 80 107
22 160 120
23 160 120
21 0

START

NUROTE

CY¥CLE

TON

TIME

QUIET

LD BC 43
ADD HL BC
Lba O

INC BL

LD B (HL}
CP B

RET %

INC HL

LD D {HL)
gp D

JRZ GQUIET
iNC E

BIT O B
JRZ TOX
CUT 0 A
JR TIME
INCG A
LA ©

BEC BC

CP B

JRZ NUNOTE
DEC D
JREZ TIME
IR CYCLE
DEC BC

CP B

JR% NUNOTE
Hop

JR CYCLE

32

POINT HL TO START
OF DATA

GET HEXT TIME
QULT IF ZERO

GET NOTE YALUE
QUIET IF ZERO

ONE HALF CICLE
OTHER HALF CYCLE
END OF NOTE ?

END OF HALF CYCLE ?

ERD OF QUIET PERIOR ?

TIME WASTER

PART IIME NOTE

1 40 21k
2 BO 241
3 80 214
b 80 180
3 80 214
6 80 241
7 80 214
8 120 180
g 40 214
10 80 181
i1 80 143
12 80 161
i3 80 143
1 240 161
15 8 143
18 80 181
17 30 143
18 80 120
19 80 143
20 80 161
21 80 1u3
22 120 120

23 L0 143

24 80 180

25 80 161

26 a0 180

27 &8 21x

28 240 180
0

i

]

Plotting

There ars three basic approaches to plotting a graph or drawimg a .
pattern on the screen of a ZX80 system;

= Using a host of PRINT statements tailored to produce the required
pattern, This is fine for small or regular patterns, but doesn't
give you much flexihility,

- Storing an 'imags' of the screen in an Integer Array, amd Printing
1t when complete. This method gives grealt flexibility; especially
for graphical applications, and allows you to change any part of
the display easily. However, 1t does use a lot of memory. To store
the image of an area of screen 20 limes by 32 columns takes a 640
element array, which uses over 1K bytes of RiM.

~ Writing the pattern directly into the RAM area used for the screen
display refresh., This method gives you all the flexibility of the
second method, without the overhead 6f a large arraye.

We can write into the display area easily enough by using the POEE
command, and read back if reguired with a PEEK, provided that we
kmow the address of the memory byte corresponding to a particular
position on the screem. This is not guite straightforward as the
area of RAM used for the display refresh doesn't start at a fixed

. address, but is moved around by the ZX80 to make best use of the

available RAM. Alsc, to conserve memory, the ZX80 doesn'*t reserve
32 memory locations for each line, but only enough te hold the
characters actually printed to that line. Within the display area
of RAM, each line on the screen cam be from O to 32 memory bytes,
followed by and 'end of line! byte; code I18. moaQOHu these
difficuliies are easily overcome by;

« Notimg that 1f we add 1 to the number stored in the 'System
Variable! locations 16396 and 16397, this gives us the address
of the first character in the display area, corresponding to the
top left hand cormer of the screen.

-~ Reserving as much space as is needed in the display area of RAH
by Printing complete %2 character lines of spaces.

Some general purpose subroutines embodying these principlss are
given on the next page.

33

The subrouiine starting at lime 7000 should be called first as it
clears the scresn, then writes 20 completely blank lines to reserve
a 20 x 32 character area. Note that there should be 8 spaces
between the ™ signs in line 7030. XP is later used as the code of
the character %o be printed; line 7050 gives it a default value of
128 (a black sguare).

The second subroutine starts at line 7100 and displays a single
character {code XP) at a point defimed by the values of X (0-19)
and Y (0-31), overwriting any previous character in that place.
0,0 is the bottom left hand corner of the 20 x 32 element dilsplay
areas

Lines 72007370 are a third subroutine which draws a straight line
at any angle, starting at ¥0,%0 and finishing a® f,71.

"he final subroutine starts at line 7400 and displays the ouwwmnwmu
string X8 starting at point ¥X,¥. By changing the routine slightly
you can make it write vertically, diagonally, or backwards.

The display lines below the reserved area are still useable by
normal PRINT or for INPUT.

7000 RBM INITIALISE

7010 CLS %0 8

7020 FOR X=1 o
7030 PRINT "... ..."3 ¥, pwmmsfr,\J
7040 REXT X o

7050 LET XP=128

7060 RETERE

7100 REM POIFT PLOT

7110 IF X <0 OR X>19 THEN RETURN

7120 IF ¥ <0 OR ¥Y> 31 THEN RETURN

7130 POKE PEER(16396)+256*PEEE(16397) +1+33#(19-X}+¥,XP
7140 RETURH

7200 REM DRAW A LINE

7210 IF ABS(X1-X0)> ABS{Y1-Y0) THEN G0 TO 7300
7220 LET Y2=Y0

72%0 IF YO> YL THEN LET ¥Y2=¥1
7240 LET Y3=ABS{Y1-T0)

7250 FOR Y=Y2 TO ¥2+I3

7260 LET X=X0+(¥1-X0)*(¥-12)/13
7270 GO SUB 7100

7280 NEXT Y

7290 RETURN

7460 LET %2=%0

9210 I¥ X0>X1 THEN LET X2=X1
7320 LET X3=ABS{X1-X0}

7350 FOR X=Xz TO A2+X3

T3L0 LEFT T=Y0+{¥1-Y0)*{X-X2)/X3
7350 GO SER 7100

7560 NEXT X

7390 RETURY

7400 REM PRINT X%

74,10 IF Xg=m" THEN RETURN
7420 LET XP=CODE(XS)

7430 G0 SUB 7100

7440 LET XB=TLE(IZ)

7450 LET Y=Y+l

A0 GO TO 7410

34

Creating a Program

Doing your own thing

Although there is much pleasure to be had from running the many
programe in this book, the most rewarding aspect of computing is
the creation of your own programs. The feeling of satisfaction
that can be obtained when, at last, your first vague ideas have
been turned into a solid, working, program, can be immense. To
ease the process a little for newcomers to the art, thisg section
looks at some aspects of the creation of a good program.

Plan it

The first, and most important, point is that successful programe
are not written in the way that ome writes a letter to a friemd;
by starting 'Dear John ' and carrying on covering topics as they
come to mind, with perhaps a p.s. at the end because you forgot
to mention something in the body of the letter, Rather, they
shonld be greated as a work of ari or a large building 1s created;
by starting with a master asketch or plan and refining that until
you are sure that the basle¢ structure is correct before proceeding
to the more detailed work. The temptation to actunally enter some
program lines into the computer should be resisted uatil you are
sure that you have an exact planm of what you want to write,

The reason is that most programs include so muck detail that it
is extremely difficult to see what is happening by simply looking
at the listing, It is rather like trying to understand the wiring
of a car without a circuif diasgram. I1f you try to understand the
workings of someone elee's program {(or one of your own that you
wrote a long time age), you will soor find yourself having to
sketch out some form of overall plan or flow chart.

The Flow Chart

Is a diagram ~ which should be as simple as possible ~ which
shows the bhasic structure of the program, or part of the program.

That is, it shows how the program progresses from ome action to
the next,

The structure of a BASIC program is made up of the following
elementary struciures;

- Sequential flow; the program progresses directly from oane
action to the next (to the next highest numbered program line).

- Unconditional Branchi the program jumps either forwards or
backwards to another point in the sequence. E.g. G0 TO 200

« Comditional Branch; the program may Jjump to another point in
the sequence depending on the result of a comparison.
E.g. IF A>B THEN G0 TO 300 :

-~ Condiiional Execution; a particular action is performed only if
the result of a comparison is valid.
E.g. IF 4<0 THEN LET A=0
or . IF 4=) THEN GOSEB 1000

« The FOR = = KEXT loop.

35

The art of programming llies in developing fiow charts which
accurately represent exactly what you want the program to do,
and which are as simple as possibls., Thus the use of G0 TO's
are to be avolided wherever possible as they complicate the
diagram {some theoreticlans say that a good programming language
shouldn't contain a GO TO type of statement 1). The first flow
nﬁwWﬂ to be drawn should show little more than the outline of
the program; how it starts and finishes, and where the main
oﬁuonwmﬂwoﬁ and printing are to be dome., The details of how

the calculation is to be performed, and any other complex parts
of the program, should be left to a second 'level! of flow
charts, which may in turn depend on third or deeper levels to
show the fine detail.

Data

If your prograz will use more tham just a few simple variables,
then spend some time thinking about the best way of storing the
data. The choice of how you represent data oftem has a crucial
effect on the workings of your program. For example, if yom want
to manlpulate characters within a string, it may be best to
store it as an integer array (eachk element of the array being
equal ta the CODE of the corresponding charascter in the string).
Also, 1f your program uses a lot of data and each data element
can only have a small range of values, then Lt may be worth
‘eompressingt your data so that two or more elements can be
stored as one integer variable - for examples see the ANIMALS
and HEXPAWN programs in this book.

Subroutines

When creating a program you will often find that you need to
include the sameé, or a similar, function more than once. By
writing the function as a Subroutins, it need orly be writtern
once but cam he called up as many times as required, thus
saving both effort and memory spacse. For this reasecn it is
usually worth while spending a bit of time during the program
planming in Iooking at similar Functions within your program to
poee 1 they can be dealt with by a suitable general purpose
gubroutine,

Subroutines may alse be used to make the program listing easier
to understand « and therefore less likely to contain errors. If
a particular functioen occuples many lines of your program, it
is worth writing that function as a subroutine even if it only
occurs once within your program, as this will reduce the lengih
- and hance the apparent complexity -« of the main program. As
an example, see the HORSE RACE program, where the subroutine
starting at line 2000 is used only once.

Clarity Counts

The computer will do whatever you tell it « the problem lies in
najicing sure that you tell it to do the right thing. This depends
to a great extent on your understanding exactly how the program
you are writing works. So take it in easy stages, starting with
an overall plan, and gradually f£ill in the details in a methodical
me, ﬂmn don't resort to programming "tricks' unless you really
ave to,

Other aids to cledrer programs include;

~ The use of REM statements to add explanatory notes in the
program listing. Unfortunstely they do take up valuable memory
space, and for one's own use notes in the margin of a handwrittien

36

listing may be better.

-~ Making calculations and comparisons zs explicii as posgible,
thus;
’ IF CODE(AZ)=CODE("Y")

igs more easily understded than;
IF CODE(AZ)=62

which should only be used where the saving of a few memory
hytes is crucial.

- The use of meaningful names for variables where possible, e.g;
LET L03S5=COST-PRICE

Again this uses a few more bytes of memory, but if you can
spare them then why mot ?

- Allocating a 'block' of lines numbers to each sbage or sub-
routine in your pregram, o that - say - the various stages
of your main program start with the line numbers 100, 200, -
and the subroutines with 1000, 2000 etc.

Primes ; an example

To illustrate the topics covered in the previous mmowuowr letls
create a program which will calculate and display the Prime
Numbers between 1 and 1000.

The program will use the brute~force sirategy of leoking at each
of the possible numbers in turn and seeing if it is an exact
multiple of any smaller number (other than 1); if so then 1t is
not Prime and the program should move on to the mext number.

Our program will cheat a 1ittle by printing the first 3 Prime
Bumbers without caleulatien,

The 3&» flow chart

Will not be concerned with the detailed calculation, but jast the
overall functions of starting the program, generating the sequence
of numbers to be tried as possible Primes and printing those that
turn out to be Prime, and ending;
START
¥
mww2a$w.m,w
FOR TRIAL = & 0 1000

}

No Yes
I5 TRIAL PRIME.? Ilillll@
ﬁ %wHﬂﬂ-HwHPb
v
NENT TRIAL
¥
END

37

This raises two points, The first is that ZX80 4K BASIC does not
gllow a multi-character variable name such as TRIAL as the
control variable in a FOR - - NEXT loop. The second is that since
ne even number can possible be Prime, we only need to generate
odd numbers for TRIAL. We can overcome both of these problems by
amending the flow chart to read;

mﬂbme
mﬁuw 152,3
FOR K HGH TO L98
LET TREAL = 2% + 3
Yo . w ‘Yes
I8 TRIAL PRIME ? lII!II%%iQ
PRIRT TRIAL
¥
HmN% N
¥
END

Which 1z as detailed as we want to go for the first level of flow
chart.,

There ars two aveas im this flow chart ('IS TRIAL PRIME!' and
*PRINT TRIAL') for which the coding is not immediately obvious,
and which therefore meed looking at in more detail.

Taking the sectiom 'IS TRIAL PRIME! first, this section has to
see if TRIAL ie an exact multiple of any number smaller than it
{other than 1), and we can do this by generating a sequence of
numbers (8, = 2,%,4,% - ~) and seeing if PRIAL is an exact
mulitiple of any of them;

¥
> FOR 8 = 3 %0 TRIAL - 1

v
m§| IS TRIAL AN EXACT MOLTIPLE OF § ¢ — 88

NEXT S
v

TRIAL Wm PRIME mmew.wm FOT PRIME

eﬁ%ﬁﬁg.Hmﬁﬁ%%ﬁpgmﬁﬁ?mommfwmmmmﬁwaoﬁ
in 2X80 BASIC;

IF TRIAL = (TRIAL/S)*S THEN - = -
The sectiom *PRINT TRIAL' of our overall flow chart is not gquite
as straightforward as it appears, because we are liable to overflow

the screen area. We¢ should therefore make the program pause each
time the screen fills up;

38

No

|

SCREEN FULL ? fes

l

DISPLAY SCREEX AND
WALT FOR PERMISSION
TO FPROCEED.

M
CLEAR SCRERN FOR
NEXYT BATCH OF
RESULTS.

H
PRINT TRIAL

¥

To decide whether the screen is full, the program can elither;

- Increment a variable each time a Prime is printed, and stop
when the varlable reaches a pre-determined limlt. The variable
wlll be rew~set to zero when the screer is cleared ready for
the next batch of results. Initially = before the first Prime
is printed - the variazble will have to be set to a starting
value by the main program.

- Look at the content of memory location 16421, This is one of
the ZX80%s 'System Variables! and can tell us in which line of
the streen the next character will be displayed; see page 123
of the Sinclailr *ZX80 Operating Manual® for details.

The second approach is glightly simpler, so the section of ncmm

becomes;

IF PERE (16421)> 3 THEN GO TO n
PRINT "PRESS NEWLIKE FOR MORE"
INPET A%
CLS

n PRINT TRIAL

The final program

We. are now in a position to write our program;

1
100
110
120
200
210
300
310
220
00
110
520
430
44O
500

REM PRIMES

PRINT 1

PRIRT 2

PRINT 3

FOR R=1 TO 498

LET TRIAL=2#*K+3

FOR S=3 10 TRIAL-1

I¥ TRIAL=(TRIAL/SHS THEN @¢ TO. 500
NEXT S

IF PEER(16421)> 3 THEN GO TQ 440
PRINT "PRESS NEWLINE FOR MORE"
INPUT A2

CLS

PRINT TRIAL

NEXT W

The main program loop, which generates the sequence of values of
TRIAL, is from lines 200 to 500, Within this loop, limes 300-320
see 1f TRIAL is Prime, and if so lines L0C0~440 print it out.

39

bmeQ.ﬂmm qmvm The answer is to inpuf something which has the correct syatax, but
i

which causes the ZX80C to give up for some other reason.
Thus, 1f it is expecting a string expression (as in the program given

Before wm&aw a program : above), rub out the two quotation marks, and enter;

Use the LIST command to make the line cursor ¥ poini to the CHRB(99**99)

first lime of your program, which should be a REM or a PRINT . L

containing the name of waﬁm program, If this is done, then Alternatively, 1f the program is waiting for an integer input, enter; .
when you subsegquently LOAD the program from tape, it will come 9ge2G9

ith the title 1i displ d.
up Wt ® ® e splaye In either case, the program will stop, and an error message of the
form 6/n will be displayed, where n is the line number of the

mﬁmgim it up INPUT statement and '6/' means 'arithmetic overflow!.
If your program takes an embarrassingly long time to run, Inadvertently entering EDIT (SHIFT/NEWLINE) in response to an INPUT
examine the innermost loops - which are executed the most coften - will display one of your program linmes t Rub it out entirely then

to see i1f there are any redundant operatioms or imstructioms enter the correct input (pius the surrounding quotation marks if a
which could be removed. For example, in the Primes program the string input is required).

inmer loop steps S through all of the numbers from 3 to IRIAL-1,
whereas a bit of thought will show that S really needs only to
be stepped through the odd numbers from 3 to TRYAL,

When a GO T0, GO SUB or NEXT is encountered, the &X8C has to ’

gearch through the program tc¢ find the line it has to jump to. Beware of lone REM's

Az it starts the search from the first line in your program, A line containing only a REM - aﬂwr nothing following it in
loops nearer the beginning of the program listing will be that line -~ will cause the following program line 1o be
executed faster tham if they were at the end. ignored, Thus;

Similarly, every time a variable name is used, the ZX80 has to 1 LET A=2

search through the program varlable area to find it. Integer 2 RIEM

variables and Integer Arrays are stored in the order in which 3 LET A=3

they are encountered during the execution of the program, so L PRINT 4

those which occur earliest in the program will be found first,

The times taken by the ZX80 ito fimd the program line or variable
are small by human standards, and normally you won't motice "
their effect on the time taken to rum a program, but when you U@Ucmmmsm
have a loop which may be executed thousasnds of tises during the 7

program, it may be worth putting the loop as mear the start of
your program listing as possible,

will display '2'.

Occasionally you may find that a new program doesn'i rum properly
the first time. The process of finding ocut what is wrong and
correcting it is known as 'debugging', om the basls that program
faults are not caused by the programmer but by mischeveus 'bugs?
that must be discovered and rooted out.

Breaking free

When you are tryimg out a new program, you often wamt to stop it The process is very much one of logical deduction, if possible
running {(to change something) when it is executing an INPUT

. 4 . tracing back from the fault to see what led up to it.
statement. The probiem here is that you have ic type something. X i
and if what you type doesn't have the correct syntax (if it isn't Techniques for doing this include;
wwvwowew integer or string expression) then the ZX80 amu_a accept - Adding extra PRINT statements at iikely places, to let you know
N s N \
i ut will just sit there waiting for you to 'correct' your inpuat how the key variables are behaving - or which path the program

is taking. {This is one reason for leaving gaps in the progran
iine numbering segquence),

The '"BREAK' key won't werk either when the program is waiting

for an input, as the ZX80 them treats this key as a space, and .

elther accepts 1t . (if it is expecting a string input) or gives ~ Adding STOP statements at strategic points ip the program.

a syntax error (if it is walting for a numeric expressiom). (Sophisticated programmers can make good use of an IF -~ THEN STOP
arranged to halt the program just before the error occurs.}

For example, run this; When a program has halted - for whatever reason - then the PRINT and

10 FOR Nzl TC 1000 LET statements used in. iamediate mode (without a line number) are
20 INPUT A8 very useful for examining and changing the values of variables.
30 NEXT N Having done this, a CONT will let the program carry on where it

left off GO 10 wil it tak th .
then try to stop it, without turning the power off, » ora WL make aKe some oihew course

40 41

Converting other BASICs

A wealth of computer programs writtenm in 'BASIC! can be found
in other books and computing magazines, but as 211 versions of
BASIC differ to some extent, it is unlikely that a program
written to run on another computer will work on the 2XB0

without some change. The extent and nature of these changes

will depend greatly on the structure of the particular program
and how it handles data, but 1t is poseible to give some general
guidance on things to look for when approaching the task of
converting & 'foreign' program to run om the ZX80:

Muitiple siatement lines

Some BASICs allew multiple statemenis on a line, usually
separated by 1 or\ , 8.8;
10 LET A=B(2)+C : PRINT A,B,C

These will have to be written on separate lines for the 2X80.

Variables
Host BASICs alleow floating point decimal numbers {genmerally
called !real' mumbers) such as 9.73, =-27.456.

Depending on the program it may be possible %c¢ 'scale! the
values - by mulbiplying the values by say 10 or 100 for
caleulations so that a reascnrable accuracy is maintained -,
but be careful that the resulting values don't exceed 32767,

BASICe that aliow real numbers will generally have a function
INT(X) which gives the integer value of the real variable X.
They may aliso use variable names of the form I% or A%. The %
sign indicates that it is an integer variable.

>§<m

Are a critical feature in determining whether a program can
he successfully translated to run oz the ZX80, Some BASICs
allow arrays with more than the 255 elements permitted on the
4¥80, and many allow aunlti-dimenslioned arrays such as;

DIM A(h,4,4)

which declares a three dimensioned array having a total of
125 (5%5x5) elemenis. This particular exampie could ba
converted by declaring a 125 element array

DIM A(124)

and calculating the required element in the course of the
program, Thus

LET Bmf{I,J,K)
would becone
LET B=A(I + 5+J + 25%K)

Hote that in some BASICs the first element of an array is
A(1}, rather than A(0)

42

LET

Some BASICs allow you to omit the LET word. Thus;
I04=8

18 the same asmi
10 LET A = B

GOTO, GOSUB

Some BASICs do not allow a fecomputedt GOTO or GOSUB such
as

G0 T0 A+100

it may therefors be possible to simplify a program by
taking advantage of this ZX80 facility

ON--GOTO, ON--GOSUB

Sometimes found in ewmeJWbmHamn these statements make the
program GO0TO {or GOSHTB) ome of a number of lines, dspending
on the 4mwﬁm of a variable. For example;

16 OF I GOTY 100,105,130
will jump to lime 100 if I=l, 105 if I=2, and 130 if I=3.

Depending om the particular form used, they may be replaced
ww a computed G0 TO or by a combinmatiom of IF,. THEN GO T0
nes. .

iF -- THEN
Host BASICUs will allow you to write
IF . ., THEN 100
inastead of
IF , . THEN @0 TO 100

Some BASICs won't allow anything except a line number after
the THEN, Programs written in these dianlects may sometimes be
almplified by taking advantage of the ZX80's ability to have
a slatement following the THEN. Thus;

14 IF ¥ > 10 THER GO TC 30
20 PRIRT "TOQ LOWY
30 - - -

could be re-written as;

10 IF X «11 TEEN PRINT "T0C LOW"
30 = - -

FOR.-TO-STEP

Most BASICs allow the variable in a FOR - REXT loop to be
incremented by any value, Thus

FOR I = 2 TO 10 STEP 2

BEXT I

steps I through the even numbers from 2 to 10, This cam be
converted Lo rum on the ZX80 by re-writimg it along the

43

1ines of;

FORJ =110 5
LET I = 23
HEXT J

INPUT

In some forms of BASIC, an INPUT statement can get more
than ome value -~ the elements being =meparated by commas,
Algo, an INPUT statement may contain g "prompt strimg",
which is printed out before the INPUT iz done, Thus;

10 IFPUT "MONTH, YEAR®", M,¥
would have to be re~writtenm as;

10 PRINT "MONTH"
1l IEPUT ¥

12 PRIKT "IEAR"
13 IBPUT ¥

PRINT

PRIKT statements wlll oftem have to be amended to make best
use of the ZX80 soreen format. Note that programs not written
for the ZX80 will genmerally zasume that print-out is to be
dong on a Teletype or a scrollimg display, and nay need
chenging to prevent a display area ovarflow,

TAB

Uged in a PRINT statement, TAB(X) spaces to pesition number
X on the primt lime. Page 124 of the ZX80 Operating Manmual
gives a routine %o perform this function.

PEEK, POKE, USR

The effect of these commands depends entirely on the particular
machine being used. To convert a pregrax contalning any of
these to rum on the ZX80 you must find cut exactly what the
command was intended to do, then write ZX80 code to perform

a similar functlion.

DATA, READ, RESTORE
Most BASICs allow you to write & list of data elements in the
program as;

100 DATA 4,9,6,273

When the program is run, a READ statement is then used to
traansfer the values te an array, e.8;

200 FOR Izl to @

210 READ A(L)

220 NEXT I

which stores the value & im A(1), 9 im A(2) and som o=m.
The RESTORE statement is used e go back te the beginning
of the list if thils is needed,

These funciions can he replaced by a list of LET lines;

200 LET A{1)=h
210 LET A{2)=9

ete. m_. n_.

DEF, FN
A statement of the form
10 DEF FRA(X) = X + X*X

is acceptable to most BASICs, and defimes a Fumction FNA(X),
which in this example returns the value of X + X*X , and can
be called up with different values durimg the course of the
program, e.g;

20 LET A = 3 * fNA(2)
gives A the value 18.
Usually up to 26 functionms ; FNA{) to FNZ() are allowed.

To convert for the ZXB0, we have to write the expression out
in full each time 1%t appears., Thus the above line would become;

20 LET A = 3 » (2 + 2#2)
END

Replace by STOP

Exponentiation

Some BASICs use the symbels ~or fto represent expomentiation:
the ZX80 uses ##

Arithmetic functions

The functions listed below are not available on the basic
{4k ROM) ZYBO, and if they occur in a program you wish to
translate then some way must be fourd of caleulating the
correct value using the ZX80's arithmetic abilities;

ATN(X) : Arctangent of ¥

C0S(X) : Cosine of X

EXP(X) : e raised to the Xth powsr
LOG(X) : log of X teo the base e
SIN(X) : Sine of X

SQR(X} : Square root of X

TAN(X) : Tangent of X

The trigonometrical functions are expressed in radians.

RND

In most BASICs using real numbers, the expression RND(1)
returns a randem decimal fraction between O and 1, and is
often scaled to produce a random number in the desired range.
Thus;

10 LET A = INT(RND{1) * 100}
is equivalent to the ZXB0 statement;
10 LET A = RND(100)

SGN

SGN(X) peturns ~1 if X is negative, O if X is zero, and 1 if
X is positive.

45

String Arrays

The lack of string arrays {e.g. 4Z(1)) on the ZX80 nay give
rise to serious problems in tramslation. See the program
"Animals! for ome possible way of overcomimg this lack, or
it may be possible to store the data as one long siring and
write routines to extract the required slement (as in Bumz-
Word), although it is not possible to change individual
parts within the string.

Joining strings

Mogt BASICs will wmﬁ you Join two strings to form a third,
thus;

10 LET A% = "ABC®
20 LET Bf = "DEFY
30 LET Cf = AS & Bg

glves CF the waliie "ABCDEF", (The + or ! symbols may sometimes
be uzed ingtead of &). The lack of this facility on the ZX80
can prove awkward, as there is mo easy way to perform the same
function, except when printing;

10 LET A% = "aBC"

20 LET B = "DEF

20 PRINT AZ;BE

giving a display of "ABCDEF",

ASC, CHR$

ASC(XS) returms the valwe of the first character im the string
X% and is similar to CODE(X#%). Note, however, that while nmest
computers use the ASCII code to represeat characters, the ZX80
does not, Thus ASC("A") gives a value of 65 on most machines,
but CODE{"A") om the 3ZX80 gives a value of 338,

Apart from this difference im coding, the ZX80's CHRE(X) .
function behaves the same as in other BASICs.

VAL
Gives the numerical valune of the string (of digits) X#, and

is effectively the opposite of STRE(X), It may be replaced
by a ZXB0 routine, thus;

10 LET X = VAL(Xg)
could be;

13 IF Ag = " THEN GO TO 20

1k LET X = ¥°10 + CODE(AZ) - CODE("0")
15 LET A% = TLE(AZ)

16 KEXT I

20 - - -

46

LEN

Returns an integer valume equal to the number of owpwwnwouw
in the string XZ. A 2¥80 routine can be writtem to perform
this function, thuse

10 LET A = LEN{AZ)
would be;

11 FOR 4 = 0 TO 32747

12 IF B = " THEN GO TO 15
13 LET BZ = TLA(BZ)

14 REXT A

15 = « =

LEFT$, MID$, RIGHTS

Thege funciions operate on the string Xf and return a string
which 1s a part of Xg;

LEFTZ(X8,Y) gives the first Y characters in X%,
RIGHTE(X8,¥) zlives the last Y characters in X&.

MIDE(X%,Y,%) gives B characters from Xg, starting at
position ¥,

Depending en the particular applicatien, it will usually be
poasible to write a speaial ZX80 routine te perform the mame
functlon. Thus; ’

LET A% = LEPTA(RE,1)
becomes;

LET Af = CERZ(CODE(Bg))
and

LET A% = MIDE(BE,3,1)
could be writtem as;

LET C% = BS

FORI =170 2

LET € = TLE(CE)

KEXT I

LET Af = CHRE(CODE(CE))

47

How it works

Qverview
The main elements of the ZX80 circult are;
- The Z80 Microprocessor itself (ICl).
- The Read Oniy Memory (IC2).
-~ The Random Access Memory (IC3,4).
~ The Keyboard,
- The video signal gemeratiom clrcuitry.

They are linked together as shown in the simplified block
diagram helow;

Address Iines 40 - AlG

280 i RAM

wmwm lines DO - D7 H

- Video
Keyboard Signal L To TV
Generation

The ROM and RAM each hold information organised as 8-bit
thytes?. EBach byte has an 'address', thus to read the value
0f a particular byte from ROM or RAM, the Z80C microprocessor
first sets up the required address number on the lines AC -
415, then issues a 'Read! command. The ROM or RAM {they
respond to different groups of addresses) them places the
reguired 8 bits of informatiorm onto the data lines DO -~ D7
for the Z8C to read.

The information in the ROM has been permanently programmed
in, and cannot be altered. It holds such things as ihe
Basic Imterpreter (of which more later), amd the patterms
for the displayed characiers. The information stored in the
RAM chips can be changed; %o do this the Z80 puts the
address of the RAM location %o be altered onto lines A0 -
415, puts the data it wants to be stored there onto the
data lines DO - D?, then issues a 'Write! command. The
contents of that RAM location will them be uptaded, and the

“0ld information previously stored at that sddress is losi.
The RAM is used to hold temporary data such as your program,
characters to be displayed, and the results of calculations,
Thig information is Iost when power is turned off,

The Memory Map given elsewhere in this book shows which
" addresses are uged for ROM, and which for RaM, Your program
may read the contents of ROM or RAM by using the PEEK
command, and may use POKE to alter the comtents of RAM.

The 280 may also receive details of which key on the
keyboard has been pressed, and data to be displayed on the

TV screen ig taken from the RAM by the wvideo gemeration
circuits at the appropriate times.

48

The BASIC interpreter

The Z80 Microprocessor itself does not understand the BASIC
janguage you enter your program in. Thus ' LET 4 = 2 + 3 1

is meaningliess to it. What it will understand, and act on,

is a much more detalled set of insgtructions known as ‘280
Machine Language'. These are of the form 'Get the data byte
stored in memory location 1234' or "Tazke the neéxt instruction
from location 5678%, and programming in this machine code

ig a time consuming and difficult task.

Therefore, so that you can program the 2X80 in a relatively
easy language such as BASIC, the %80 microprocessor rums a
machine language program - stored in the ROM ~ known as the
'BASIC Interpreter', When you are not actually running a
BASIC program, the BASIC Interpreter program is continually
sending the contents of the display file area of RAM to the
TV, and scanning the keyboard. When it detects a keystroke,
it receives the code for the key pressed, adds it to the
display file and to a working space area of RA¥ (moving

other information in RAM around if necessary -~ ag for example
if you had imserted a character in fthe niddle of a line),
moves the cursor, and checks the syntax of what you have
entered, If you input is stlll incomplete {(if you haven't

yet presged NEWLINE, or if there is a dreaded Symtax Error

in the line), it then resumes the display and keyboard scan
routines, However, if it is now in a position to do .
something ~ like running your program - the BASIC Interpreter
then attempis to do as instructed (and stops generatiaog a TV
aignal).

Your program is mnOW¢ﬁ by the BASIC Interpreter in an grea
of RaM. When the RUN command is given, the Interpreter
works 1ts way through the program, taking each line in turn,
and acting accordingly. For exampie, on reaching the program
line;

10 LET A = 3% + §
the Interpreter will cause the 280 Microprocessor %to;
-~ Note the current line number (10).
- Recognise the LET command.

- Pind the RAM locations that have been used to hold the
value of variable A. (If A hasn't been used before in
the program then new RAM locations are allocated).

- Calculate the value of the expression on- the right hand
side of the = sign (3 + 4), and stere the result in the

RiM locations reserved for the vartable A.
Similarly, on encountering;
%0 G0 TO 10

the 280 will be made to search through your program for line
10, then contimue from that point.

Binary Numbers

Bumbers (e.g. the values of variables) are stored by the
2X80 in binary form - as this is easier for the machine to
handle - and are translated to and from decimal form on
input and output.

49

Each memory location contains 8 bits, giwving 28 = 256 The dot patterns for the dibsplayable characters are stored
possible combinations which -are used to represent the “in the ROM. To display a Yinme of characters the dot patterns
numbers 0 to 255; this being the (decimal) range of values for the top TV horizontal scan line are read out of the ROM
valid as data in a PEEK or POKE command. This range is, in turn and sent to the TV. Then the dot patterns correspond-
however, too limited to be of much use, and so the ZX80 ing to the second horizontal TV scan line are read out, and
stores the 4WH¢0=OWHN dmmwmvwm in Mﬁw mammmmanﬂwmaow% so on until the line of characters is complete.
i = - possible combinations . .
.Wmmwwwwwmunmwwwwm wmwummmwwuﬂﬂwwm&m in the range :wmumm to Each dlsplayed character takes about 2.5ud of a horizontal
#32767 (including zero), Memory addresses are similarly IV scan line. During this time, the code for the next .
defined by 16 bits, but are taken as being positive numbers sharacter to be displayed is read from the RAM and stored in
in the range O to 635335. Ome important point to mote 1s the latch ICS5, Then the dwal port multiplexers IC6/7/8 are
that the first memory location of the two used to hold a switched 50 that address limes AC' - AB' to the ROM are
16 bit number {i.e. that with the lower =zddress) is the controlled by the ocutputs of the latch 1C5 and the TV line
least significant of the two. The program 'Decimal Peeker! counter IC21 instead of by the Z80 address lines A0 - AS8.
gives an example of how to comvert the contents of two The ROM then gives out an 8 bit dot pattern which is them
memory locations into their decimal equivalent. lcaded into the 8-bit register ICY9, from where it is shifted
out one dot at a time, mixed with the TV line and frame
gsynchroniging signals, and fed via the UHF modulator to the
TV set.
£ Although there are 128 possible display characters, the ROM
The Display only holds the dot patterns for 54; the other 64 are the
One of the clever features of the ZX80 is the way in 43%05 tinverse' characters formed by inverting the video sigmal in
the TV dieplay signal is generated with minimal additional 1020 under contrcl of the data bit D7!,
hardware. The major circult elements involved are shown
below;
. ‘ Display in Detail
, A0-415 M ﬁi A9~Al2
RAM Mexl o0 s While dieplaying a line of characters, the Z80 Microprocessor
1imwﬂmww DO-D7? | 280 106 b ig executing a series of NOP (No Operation) instructions.
H = rel ic7 Bach of these instructions takes about 2,515 (8 cycles of the
—] vel,_ w ﬁ %1C8 3.25MHz CPU clock),and consists of two parts;
eg . >
1014/15 Hnm 1C5 - The 'Instruction Fetch' part, when the %80 puts out the
] address of the memory location at which it expects the
POt D71) j next machine language instruction to be stored, and reads
-7 Gombining that instruction from the data lines DO - D7,
ombini - ; During this time the open collector inverters IC14L/15 are
& inverting Hodulaton v enabled, pulling DO -D7 down to OV, thus the %80 sees a
. ICiz,20 '0Ct (NOP) inmstruction, regardless of ihe actual content
To17. 18 16.31] of the memory location accessed, This RAM location will
acwwwﬁwm Mmu _ %MMHW@NM in fact contain the code of the next character to be

displayed, and this code is latched into IC5 as described
earlier, the lk resistors Rk - Rl1l preventing the actual

When the ZX80 is in the display mode, the 280 Microprogessor wwm:wwwwnﬁ limes DO' - D7' from being pulled to OV by
1C1 coptrols the TV synch generation clreultry by its H@mau . .
RD and WR outputs to produce a short line synchronisation - During the_gecond part of the instruction cycle, the %80
pulse every 64uS - that is at the start of each TV horizontal pulls its RFSH output low. This signal is used to switch
smcan line. Also, at 20mS intervals, a wide synchronising the multiplexers 1C5/7/8 as described previously. The 280
puise is generated to lock the TV's vertigal gcan. _also puts out an address which is incremented each instr-
¢haracters which cam be displayed uction cycle, and was intended by the %80 Microprocessor
wwcwwamemernwwwmmammoH w m4 horizontal scan kuow. andé : : degighners to be used as m.wwmummw address for dynamic
each character position on the screen is made up from 8 memories. In the ZX80, however, it is used to time each

horizontal scan line, the starting address being chosen
so that 64uS later A6 goes low, causing an interrupt
which diverts the 230 to another routine for generating

a line synchronisation pulse and preparing for the next
TV lime scan.

possible 'dots' in each of the 8 lines;

e@ use RAM space efficiently, the ZX80 only stores in the
display area of RAM the actual characters to be displayed,
Empty lines and blanks at the ends of lines are not stored.

50 51

i i isplayed line
Each string of characters corresponding to a disp 1
is terminated by the special 'Emd of Line' code 76, This
code has two special properties;

-~ T% is the only code which could reasonably be put in the
display area of RAM that has bit 6 = 1.

- It is the 280 Microprocesscyr HALT instruciion.

When this code is read from the RAM, D6 being '1' turns off
the open collector imveriers IC1L/15 via inverter IC13,
gates IC16/17 etc, This allows the #8C to pmemﬂ a EaL®
instruction, which it obeys by executing & series of NHQP
instructions of its own accord until interrupied at the end
of the horizontal ¥V scan line. While in this state, the 480
HaLT output is low, forcing the open collector inverters
IC1L4/15 on throughout all of each instruction nmnme sp for
the remainder of the line the parallel %o serial shift reg-
ister IC9 is fed with the 'blank' O's pattern.

Using USR

Together with the PEEK and POKE commands, TSR lets us use
routines writter inm %80 machine code, rather than inm BASIC.
spart from the sense of intellectual achievement that can

be obtalned by doing so, running programs in machine language
can let us do things which are impossible in BASIC, or which
will run mach fasiter than thelr high level language Versions.

To make use of USR, you need to be familiar with &80 machine
language. This is a complex subject and cannot be covered in
thig book, instsad the reader is advised to study ome of the
Z80 booke - such as "Programming The Z80" by R.%aks - which
are readily available from compubter bookshops.

The machine language programs you write will need an area of
BAM to operate in, which will not be overwrittea by, or
interfere with, a co-resident BASIC program. (Imevitably

some form of BASIC program will be needed, 1f omly to call up
the machine langnage routine). There are several ways of
allocatimg RA4M space for this purpose, each having its own
virtues and difficulties, and these are discussed in the
following paragraphks. For examples of programs using USR, see
MICROMON and MUSIC.

Using REM

It we make the first line of our BASIC program a REM statement,
then we can use the RAM space occupyed by the characters
following the REM to hold the machine language program. Thus
if we enter;

1 REM ABCD

52

this will be stored at the start of the program area in RAM
as (in decimal form);

location value

wmwmw m * line number 1
16426 254 REM

16427 %8 A

16428 39 B

16429 50 c

16430 LI D .
16431 118 end of line

The locations 16427-16430 can now be changed (by POKE!ing)
to hold the machine code we wish %o run, as long as the
ZX80 'End Of Line' code 118 (hex 76; the Z30's HALT inst-
raction) is not entered. Unfortunately, once the REM
statement has been altered in this way, displaying it {(by
listing that part of the BASIC program on the screem) is
liable to make the system crash in peculiar ways depending
on the actual values POKE'd,

Since the machine code is considered by the 2X80 to be part
of a REM statement, it can be saved to and loaded from tape
as part of the BASIC program.

Using DIM

By declaring an array with a DIM statement, then the variable
space thus reserved canm be used to hold machime language
programs - with no restrictioms on the codes which can be
stored, Thus DIM A(255) will give a 512 byte space which can
be accessed using PEEK and POKE or LET statements (in the
latter case two bytes of machime code will have to bBe comb~
ined to form each element of the array).

The machine code will be saved on tape whenever the BASIC
program containing the DIM statement is saved, and can be
LOADed back - although the BASIC program should therm be
started with a G0 TO n (where n is a lime after the DIM
statement) rather that RUN to preserve the machine code,

The omly problem with %this method arises because the RiM
area nsed by the ZX80 to hold variables is not fixed ~ but
tfloatst above the program area, so the machine language
program can't use absolute addressing unless the associated
BASIC program is not subject to any alteration.

in spare’ RAM

The 'spare’ area of RAM betweem the end of the screen
display area {above DF-IND) and the lower reach of the stack
can be used to hold a machine language program, although
care must be takem not to overlap the system stack or
display areas., For this reason this technigue is perhaps
best suited to applications where there is emough spare RAM
avallable te allow generous tguard bamds' around the machine

53

code. For those wishing to experiment, try putting your
machine cede as high in memory as posaible but leaving about
50-100 bytes right at the top of available RAM for the stack.

Saving the machine code is not straighttorward, but it can
e done as for example by copying the code to a BASIC Integer
array prior to SAVEing.

Above the stack

4 BASIC program such as;

1 FORI =1 T0 100
2 @0 SUB 3
3 NEXT I

will move the stack pointer down to leave a 200 byte space
for machine code at the top of RAM.

Although this technique has the same problems in storing the
machine code on tape as the previous one, it does offer the
advantage that the machine code area is now protected from
interference with the system stack and display area.

MICROMON

Thig is an extremely basic program which will allow you to
enter and run machine language programs on a 1k byte ZX80,

F¥hen you run it, it first asks for an address, which should
be entered as 4 hex digits. It then displays the contents of
that Iocation as 2 hewx ¢igits. You may then;

~ Press NEWLINE, This will display the contents of the next
memory location.

~ Enter a 2 digit hex number, which will be stored in the
current location. The program will them display the
contents of the next memory location.

« Enter the letter G, This will rup your machine language
program by doing a USR to the current address. The mach~
ine language program should be terminated by a RET
instruction {(hex C9), which will return control to the
BASIC MICROMON program and display the decimal value of
the Z80'z HL register pair.

- Enter any character which is not in the ranges 0-9 or
A=G, The program will ther ask for a new address, If you
then just press NEWLINE without entering an address then
MICROMON will stop (bat mote that using RUN to start it
again will delete your machine code).

A 512 byte space for your machine language program is
reserved by the Integer array A(), although MICROMON will

in fact allow you to load machine code into any area of RAM,
If the program is entered exactly as shown, this space will
start at 417Eh, However, since this location will vary if
for example you have included any extra spaces when entering
MICROMON, it is best to check exactly where A() has been

54

mdom@@ by using MICROMOK to find the (hex) values stored at
locations LOOSh and H0O9h (system variable VARS). The first
address of the space to be used to kold machine code is thenm

the hex address obtained from these locations 1
us 2 For
example, with the program as written: F '

hex content of LOOSE = 7C
" 11 " #OO@W - h«u.,
combined address = LY7Ch

starting address of area for machine code = L17E

If MICROMON is saved om tape after a machine language program
has been entered, then on subsequently re-loading it from
tape, starting by a GO T0 10 (rather than RUK) will preserve
the machine code.

As an example of usging MICROMOE, load the following machins
code program;

addr gede comment

L17E 21 LD HL , 1234h
LL7F 3t

L3180 12

L3181 cg RET

Then run it {starting address = 417Fh}, It should return with
a display of 4660 {decimal equivalent of hex 1234). :

1 REM MICROMOK
2 DI A{25%)
10 CLS
11 PRINT "ADDR"
12 INPUT Af
13 LET a=0
1) FOR L=I TC L
15 LET A=CODE(AR)-28+16%4
16 LET AR=TLZ(A%)
17 NEXT L
20 CLS
21 LET P=a/256
22 GO 8UB %0
2% LET Pud-P*256
24 @0 SUB 50
25 PRINT " ™,
26 LET P=PEEK{a)
27 @0 3UB 50
28 LET A=A+l
20 INPOT A8
31 IF Ag="" THEN GO TO 20
%2 LET L=CODE(AZ)
2% IF L<28 OR L 44 THEN GO TC 10
2 IF Lahl THER GO TO LO
35 POKE A.1,16%L+CODE(TLE(AZ))-L74
Z6 GO TO 20
40 CLS
41 PRINT USR(A~1)
k2 GO TO 11
50 LET LzP/14
51 PRINT CHRA(28+L);CHRE(28+P-1*168);
52 RETURN

55

Improving The Picture

1f you *fill in' an area of the screen by repeatedly writing one
of the graphics characters (particulariy the chequerboard pattern
given by key A), then you may get unwanted vertical lines at the
edges of the characters. To see this effect, run the following
program;

10 FOR I=1 TO 320

20 PRINT "gY;

20 NEXT I

The problem is causged by timing differences between the clock and
load inputs to the shift register IC9. It can be alleviated by
swapping R2 and CO; with *C9' increased to around 200p as required
by the particular computer.

This still leaves another weakness in the vidso gemeration circuaita,
due to delays in the I1C11,12,13 area. The effect iz mosi noticeable
if you have the 2X80 connected for white characters on a black
background (board point & connected to B instead of C), and éiaplay
a line of white squares. e.g£;

10 FOR I=1 TO 10
20 PRINT CHRE(128);
20 NEXT I

I¢ you run this program you will probably see a narrow vertical
black line between each character positlion.

To overcome this problem it %s necessary fo add another IC - a
245574 - o re-time the wideo output signal.By cutting the
7uL874 s leads short, and by laying it om its back, it is Just
possible to fit it between IC7 and IC12,

b BREAK
vw 20 > = X Ea—
R3o

+5¥

4¢$E

4 EM

~

2¢ 3 ADPED
{sc20,p3) 1 THLETE

M.d

oy

56

Connecting a Monitor

Although the %X80 provides an adequate diaplay once the TV setts
tuning, cortrast, and briiliance controls have been adjusted to
their optimum positicns, the definition of the picture is limited
by the UHF modulation and de-modulation processes, and particularly
by the receiver video filter.

Anyone lucky enough to own a TV monitor can get a much sharper
picture by driving it with a straight video signal from the ZX80.
Most monitors are designed to accept a composite (video plus
sync) signal looking like;

+1¥ peak white

—= OV symec

and generally the impedance at the video input comnection will dhe
around 75 ohms for feeding from co-~axial cabls,.

In some cases it will be possible to get an mnnmwwmcwm Wmmnww by
connecting the monitor to the ZXB0's modulator input;

' R30
HlthHHU1|1 VIDED

MODLATOR ’ Rz
L iy DU

TO MONITGR

U COMPOSITE VIDED

ov

However, for optlmum results, the following circuit should be
used, Lt involves changing R30 to 470 ohme, replacing R32 by a
diode, and adding two other resistors and a tramsistor, They can
all be made to fit in the case if care is takem, IT the monitor
doesn't provide a 75 ohm termination, them the lowsr 120 ohm
resistor may be changed to 68 ohms., Note that this circuit still
aliows the ZX80's modulator to function correctly.

+5Y

VIDED
ficzo,p8)

SYNC
{18, 51

zneee

JEYNIRCS
(#32 Pos™)

Toe MEDVLATOR

LOrMPDSITE
YibED TO
Mo ToR,

57

Memory Map

The ZX80's on-board R&M and ROM address decoding uses the address
lines A0-415 as follows;

780 Address line ;|415 14 13121110 9 8 7 6 5 4 5 2 10
ROM o O A A A A A A A A A A A A
RaM i A A A A A A A A L &

3 5 i ; Z¥80 is in the
ddress lime A15 is brought to a '1! when the
wwmuwmw mode, otherwise it is a *0'. Al3 1s not used,

The resulting memory map is;

Hex Dec

FF¥¥ mwmwm_

Top %2K is as lower 32K, but
used in ZX80 display mode.

AN

L 16K RAM space

4000 638y |

ZFFF 16383

Reflection of lower 8K
2000 8192
LEFF 8191

space for 4K ROM extension
1000 4096
OFFF L095

0000 0

LK ZY80 BASIC ROM

i lable between
The EIR0 dymamically allocates whatever RAM is aval
the mwm&mawwmwwwwwmm and stack, the user program and 1ts 4»H#muHMM”
the upper and lower parts of the display, and a working space areaj

Top of available RAM — | STACK

SPARE

LOWER PART OF SCREER
UPPER PART OF SCREEN
WOREING AREA
PROGRAM VARIABLES
USER PROGRAM

SYSTEM VARLABDLES

4028h Leh2h—
LOOOR 16384 —

et} — 2 | e oty | — L]

58

Adding Memory & 10

While you can run many interesting and useful progrsms using just
the 1K on-board RAM, were memory is very useful egpecially 1if you
want to use a lot of data in a program, or have a lot of output

- %o be displayed.

Although all of the necessary signal lines have beem brought out
to the edge conmector, adding any form of memery expansion to the
ZX80 is a delicate busimess because of the 1K resistors Ri-R11
in series with the Z80's data lines. These resistors greatly
reduce the system's noise margins and prevemt it from being able
to drive any appreciadle load {DC or aC),

Without changing the ZX80 itself, the omly way of achieving a
reliable memory extension is to connect only ¥0S loads to the

data bus, and tc keep the capacitance on the data lines as low
as possible.

The Address and Control lines do not have this problem, and can
happily drive twe LS TTL loads connected to each line.

In the basic 2X80, the 1X on-board RAM is reflected througheut
the 16K byte space. When external memory is added, it must
disable the on-board RAM using the YRAM CS' line for those
addresses which are ugsed by the externsl RAM, .

Data line loading similarly limits the way in which I/0 poris
can be added; so one of the specialised MOS I/0 chips such ag
the Intel 8255 should be used,

As the %80 CPU has separate instructiems for handling I/0 ports,
the 1/C ports need mot interfere with RAM & ROM address space,
However, this means that a machine language routine will have
to be written to deal with 1/0 transfers, and called by the USR
comnand, If this is considered to be too messy, them the 1/0
ports can be placed in an unused RAM or ROM area, and accessed
using the PEEK and POKE commands,

4 circult suitable for adding up to 4K bytes of RAM is shown on
the next page. It uses pairs of 2114 1K x 4 static RAM chips,
which should have 250nS or better access times. X9 ig a one out
of eight decoder used to allocate memory space as below;

Decimal Hex
1638417407 LOO0 -4 3FF On board RAM
17408-18L3) Y004 7FF X1,.X2
18432419555 L8004 BFF X3,
19456-20479 LEOO-LFFF 15,X6
20480~-2150% 500053 FF 17,X8

4 separate +5V regulator is allowed for as the full 4K bytes
extension will draw around C.5A, which may be too mmch for the
ZX80's on-board regulator to provide, Similarly, az extra 9V
mains adaptor will be needed if the ZX80 unit won't provide
sufficient current for both the ZX80 ané LK bytes of extrs RAM,

59

¥

4K RAM
Extension

X

Xé
*1o

oF X9

T oF xi-X8
% oF x9

It oF
Ffﬂ
pin 1 oer Ri0

1%

’)ﬂ
pi‘ﬂ

in

X5
“fo

+8Y 1o pno¥d oF XI-X8

> OV

1600

P4

oy

+EY AEG.
7805

I

¥

X2

-
LiwK DMLY FoR

RAM FITTED

_—

[}

2

THLS20. L

2ATA

];:, 13 3 0

LG

A T
3
At
py' A0
+5Y
mff}w——'—sﬁ-

A BT T
Al BB:D-—-—-WMQ

e’ A7
a7 Ai

A B }-——.—-—-—Lﬁ
T 17 2 S—

o'

0z’ pe
D3

95" A o>
A¢ B0
WR A7
Ag Bin
o Byg

o'
Y g7 e

RAMES A2 -

MREQ,

16K RAM & I/O Extension

For those wishing to use their ZX80 to the fullest possible
extent, a circuit is given for an add-on board which will
provide 16 K bytes of space for programs and data, and will
give the user 2i programmable I/0 lines to control music
synthesisers, model train layouts, or whatever you wish,

It makes use of 8 16K 2 1 dynanic RAM chips (X6-X13}, an
address multiplexer and refresh controller IC (X1h), a
Programmable Peripheral Interface IC (X15) , and 5 miscell-
aneous LSTIL IC's which perform the address decoding and
some timing functions.

It is designed to plug directly into the rear ZX80 expansion
connector, without requiring any modification to the ZX80.

A separate power supply is needed to give ali least the +i2V
and ~12V limes; the +5V supply may be derived from the ZX80's
internal rsgulator, alternatively the expansion board plus
the ZX80 may be powered by a power supply such as Timedata's
PZ100 which provides stabilised +5V, +12V and =12V lines ;
reducing the dissipation within the ZX8C's case, The power
requirenments of the extension board are; +5V & 200mA, +12V
@ 250mA, ~12V @ 20mA, Note that if the #12V supply is
connected without the -12V, then the memory IC's will over-
heat and could self-destruct,

The relevant memory addresses are;

RAM : 1638L to 32767 (decimal)
OO0 to PFFF (hex)

I/0 : decgimal hex
~16384 cooo Port A data
~16%83 cooL Port C data
«16382 co02 Pori B data
~16381 C003 Control register,

Connecting this extension board disables the Z2X80fs internal
1K RAM,

Because of the relatively poor noise immunity of the 2X80's
data bus lines, and also because of the large current spikes
drawn from the supply lines by the RAM chips, the comstruetor
should make the board as small as is reasonably possidle, and
use thick lines for the power lines (including the derived
-5V RAM supply). The 47aF decoupling capacitors should be
evenly distributed about the board,

If all is well, then with the extension board connected to the
ZX80 amd power applied, the familiar (E should appear om the
screen, and all previous programs should rum without- difficalty.

The fellowing program will prove that the ZX30 cam 'see!
16% bytes of RAM, by repeatedly assigning new array space.
10 YOR N=1 TO 812
20 DI¥ A(8)

30 NEXT N
40 PRIBT "OK"

61

I1fa
RESET .
ov

EIFA e

Iy L—-N
Pt 1] o

Xis

i 412Y

x7

360 R

PINS

xq

1l
™
I
it
t
q
8

26

POWER

X3

7
-
>
=

.7 o

oy
7
k3

bk}

TYPE
TaLS T

TELS 20
WLS 30
TeiSon
TLLsS2N
3242
15 | 8255

xé

g
&-13 1 41th (25008} 14
Iy

2
3

M

ki)

A T S R I A O

Y

_—

X0

21]

G} LAY

52
fi3

12,
H

®

JPRE L

1%
it
b
%
EA

LI
As3

‘Rll

=D

.

AL <
AB <
Al

ey 0V

LA ey
e
h {0
ARrLS 24 stV
1B s 4BY

Ad jﬁj———?‘l

HE ==
58

5.1
a1 98 Dt
A3 0B :>-~»--3-‘-'~

Ay 218
12E =

T0 Z.XQU
e

AL 28 >
Ab 208 2oLl
AT 18 ;:--mm-?—

ap
Al
A9
A5

+5V

REFSH 238
A

"VIRER 1h

ov

Using the I/O

This section summarises the main features of the 8255
Progranmable Peripheral Interface chip, and gives enough
information for most purposes. For more complex applications,
refer to the 8255 data sheets

The 8255 has 3 8-bit ports (A, B and C) which may be used in !
Hodes 0,1 or 2. Mode O is the simplest, and suitable for
most applications.,
In Mode O, ports A and B may each be set up as 8 input lines
or 8 cutput lines, Port C is divided inte upper and lower
i=bit sections, each of which may be set up as input or
output, Setfing up the 8255 is done by wriiing a word to the
Contrel Reglster (address -16381). The word to be written is
constructed as;

Bity 7 6 5 b 3 2 1 0

(ilofol | Tof _._Em t el 0=0/P, 1=1/
ﬁillltlxl||| mmww c OWeTa = s H 3
Port ¢ upper, " .

Port A, i b

Thus to set Port A for output, B for input, and both parts of
Port C for input, we need to write an 8-bilt pattern 10001011
to the Control Register.

Remembering that;

If bit 7 = 1 this corresponds to decimal 128
64
32
16
8

L
2

1
then we can set up the PPI by a BASIC statoment;
POXE -16381,139

(139 = 3128 + 8 + 2 + 1)

Having set up the 8255, we can now send a patiern to the output
port 4 by:

O 0 B3 BT N

POEE ~16384,X where X is the pattern (0-255)

The pattern on the 8 input lines connected to Port B can be
read by;

LET A=PEEX(-16382)
A1 8 bits of Port C zam be controlled by;
POEKE -16383,X

Alternatively, in time-critical applications, a machine
language routine may be used to access the 8255.

63

The 8 Port C ouiput Ylines may be set or reset individually at
any time by writing one of the following values to the Control
Register;

Value writien Effect

PO reset to O
PCC et to 1
PCL reset to O
PCL set to 1

PC2 reset to O
PC2 set to 1
PCE reset 10 O
PC3 set to 1

PCL resei to O
PChL set to 1
10 PC5 reset to O
i PCS met to 1

12 PCS reset to 0O

13 PCE set to 1

i4 PC? reset to O

15 PC7 set to 1 i

WM NI WO

When set up as output lines, the 24 I1/0 lines can each drive
one standard TTL load., When acting as inputs, they present a
high impedance to the driving source, and accept an input

voitage of.less than 0.8V as a 0!, m voltage beilween +2.0V

and +5Y as a '1', BSome typlcal ﬁnwmwmmnm circuits are given
below;

DUTPUTS INPUTS

[—

T afh. £V £mos

T

L=t >5v. nEuw

8255 LED

ﬁ 8255
2R SWITeH
‘mnruwmo =67

av

I
SWITCH
{troa80 = ")

64

