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Preface

preface

Computer interfacing is the means for connecting a computer to sensors and actuators,
It is the “bridge” that spans the gap between computer science and electronic
technology. The principles of computer interfacing are relatively simple and can be
learned by anyone who has the patience and is willing to invest the time and care to
read and perform some simple step-by-step experiments. This is not to imply that
there are not very sophisticated and elaborate activities that can be accomplished once
the techniques are mastered. Rather, our point is that the technology has been so well
developed that you do not have to be a specialist to apply it.

The plan of this book is to introduce you to the concepts of computer interfacing,
assuming you have no prior experience in digital electronics. Although you may be
able to learn some by just reading, we are convinced that mastery of the techniques
will only come by doing “hands on” experiments in programming and circuit building.
To this end we have written this book to be used with a computer. In particular we
have chosen the Timex/Sinclair computers because they are very inexpensive yet very
sophisticated microcomputers. These include the ZX81, TS1000, TS1500, Spectrum,
and TS2068 models. If you are willing to make the effort to learn the subject of
computer interfacing, we strongly recommend that you make the modest investment
in a personal computer to go along with your study.

There is a saying that the only way to learn computer programming is to write
computer programs. It is equally true that the only way to learn computer interfacing
is to build interfaces. You do not have to be a computer scientist to become a
programmer nor do you have to be an electrical engineer to become an interfacer.
With the fantastic growth in personal computing over the past few years and the
promise of even greater growth in the immediate years to come, the majority of users
will be content simply to operate their computers with programs and devices
developed by others. But there are those who will discover thatthere is an even greater
adventure in creating and discovering ways to use personal computers that goes
beyond “plugging and chugging.” This book is for them. It is the outgrowth of the
authors” experience in teaching this subject to high school and university students and
teachers, industrial and government technicians, engineers, and scientists. It is the
authors’ hope that this book will be useful not only to individual students, scientists,
engineers, and hobbyists, but also to teachers in high school and beyond so that they
can introduce these techniques to their students.

In Chapter 1, we survey those aspects of scientific experimentation that pertain to
computer automation for measurement and control. We also discuss some funda-
mental concepts dealing with numbers and codes that will be helpfulin understanding
the principles developed in the rest of the book. Chapters 2 through 7 cover the various
aspects of computer interfacing in a logical sequence starting with digital electronics
(Chapter 2) and ending with a description of the control signals used for advanced
interfacing (Chapter 7). Chapters 2 through 6 consist of discussions of the principles of
the topic under consideration and a series of six experiments which serve to illustrate
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thfa important concepts discussed. A survey of the logical structure of the Z80
microprocessor and machine code programming is presented in Chapter 3. The
principles of input and output ports presented in Chapter 4 is built on the material
fieveloped in the preceding two chapters. Chapter 5 and 6 apply the principles of
Enpfﬁ/ f)utput ports. Chapter 5 deals with digital input and output and analog output
w.hz_le in Chapter 6 we consider the requirements of signal conditioning for obtaining
digital input from analog signals. As noted above, we conclude in Chapter 7 withsome
principles of the more advanced techniques used in automation.

Thp guthors would like to express their thanks and appreciation to David G. Larsen
for his interest and cooperation. Our thanks also to Roger J. Combs for his assistance
O'ne'af us (JA.D.) would also like to acknowledge the Chemistry Department.
Vzrg]hn}a Polytechnic Institute and State University, Blacksburg, Virginia, for thei;
provision of facilities during the development of this book and also to the Qiueens}and
Inst}tute of Technology, Brisbane, Australia, for providing financial support for the
project to be completed in Blacksburg. We would like to dedicate this book to our
wives, Barbara D. and Jewell F., for their encouragement and support,
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bits and pieces

One purpose of computer interfacing is automation, for example, using a computer to
assist in making measurements and controlling devices. The measurement can be as
simple as determining if a device is on or off, and the control can be as simple as
turning a device on or off. Of course, both the measurement and control can be as
sophisticated as the imagination and resources of the interfacer allow. One thing that
becomes obvious as you learn the techniques of interfacing is that there are many
useful and clever things that can be done using very simple and inexpensive
techniques. A device can be as simple as a light bulb or as complicated asarobot or an
industrial plant.

The two essential elements of computers are software (programs encoded with
bits) and hardware (the pieces of equipment). Hardware consists of the electronic
circuitry and electromechanical devices that make up the computer. It includes the
integrated circuits, keyboards, video displays, disks and tape recorders, printers, and
all other such peripheral devices. Software is the collective name given to the
programs which make the hardware elements function in a coordinated way to
achieve the purposes of the user.

MEASUREMENT AND CONTROL

To the items in the list of peripheral devices we could also add scientific instruments. It
is of considerable importance to any individual in today’s high technology world,
whether high school science or vocation student, or research scientist, to appreciate
the potential for automation of scientific instrumentation and what is involved. There
are two concepts that are useful to serve as our point of departure. We shall start with
a dictionary definition of each taken from Webster's New Collegiate Dictionary
(G. & C. Merriam Co., 1980) and elaborate from there. The first is the definition of
experiment.

An experiment is an operation carried out under controlled conditions in order to discover
an unknown effect or law, to test or establish an hypothesis, or to illustrate a known law.
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Most experiments involve the operation of measurement. What is emphasized in this
definition is that those measurements must be made under controlled conditions. In
practically every experiment, measurement of some property of interest is of value
only if other experimental properties ( parameters) are held constant. In many
experiments, the property to be measured is of particular interest as some {one) other
experimental property or parameter is systematically varied. The property of interest
is the dependent variable, the property which is systematically varied is the
independent variable, and those properties which are not varied are experimental
constants. Usually the data obtained from the experiment are illustrated by a graph.
The values of the dependent variable are plotted on the vertical axis versus the
corresponding values of the independent variable on the horizontal axis. The results
that are sought are often some property of this graph, such as its shape, slope
(steepness), or intercept. During the course of the experiment, not only the dependent
variable but also the independent variable and constant parameters must be measured
to ensure that they are well behaved. The experiment must be designed to control alt
of the experimental conditions. In general, we can consider a scientific instrument as
an automated experiment involving the measurement and control of the required
experimental parameters.
The second definition we should consider is of the term data processing,

Data processing: the converting of raw data to machine readable form and its subsequent
processing (as storing, updating, combining, rearranging, or printing out) by a computer.

We can see from this definition that instrument automation is one aspect of data
processing. Without taking exception to this definition, it is more convenient from our
point of view to divide instrument automation into the two areas of {1) computer
interfacing and (2) data processing. Here we consider computer interfacing as both
the conversion of raw data into machine readable form for data acquisition, as well as
the conversion of machine data for instrument control. Note that we reserve the
“subsequent processing” given in the definition to be the main emphasis of the term
data processing. The distinction between the conversion of raw data and its
subsequent processing thus becomes predominately a distinction between hardware
and software. Figure 1.1 illustrates the relationship of the terms we have discussed.

PROGRAMMING AND PERSONAL COMPUTERS

We assume that you have some familiarity with personal computers. You should at
least be familiar with the more elementary BASIC programming commands, such as:
PRINT, INPUT, LET, GOTO, FOR. . NEXT, IF. . THEN. If you have not had any
experience in writing simple BASIC programs, you can learn all you need to know
from the User Manual that comes with the computer. If you have had some
experience, you know how the computer needs to be programmed in order to perform
some desired task. In BASIC, the program consists of a numbered list of lines with a
BASIC command written on each line. This program is stored in the computer’s
memory, and when RUN is ENTERed from the keyboard, the computer executes the
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program by starting with the lowest line numbered command and exgézgt'}ng
commands in succession of increasing line numbers unless commanded to
line number out of sequence.

SOI’?‘Z{? tf;leermory that your BASIC program is stored in is commoniy.caiec(ii I:‘Al\g
(meaning Random Access Memory) but should properly be called Wr?te ‘ ﬁl . g?a :
Memory {WARM). (WARM is an acronym suggested by the authors.) Itis ca.Weh ;)l o
tile memory because it is lost when power is removed from the comg{:;ptter.()lc : & Y
computer loses power then the memory becomes COOL (Cleaned ()ut. : JEg; S.
Personal computers have varying amounts of memory usually measured in 110 }): s,
1KB = 1024 memory locations. In addition to WARM, personal computers also }?VE
an additional 8 KB, 16 KB, or 24 KB of nonvolatile Read Only M emory (ROM), w ;tcl
holds the computer’s operating system. The operating system is also a };;rogéam;i \ };Z
the program that handles all of the business of interacting with the key Gr;g ?n ;
video as well as executing your BASIC program when you enter. RUN.d e g};{gloc
operating system used in the simpler personal compt.lters is called a DA
Interpreter. It is written in machine language, the set of H”lStI‘ﬂCthIl codes BZ o
microprocessor in the computer can execute. I:xflac}; seemingly elementary BA:S

: sists of many instructions in machine language. ‘ '
LOI’?lﬁazgvz(;?age of usingya so-called high ievel !anguage such as BASEC I1s thgt };S
commands do considerably more sophisticated operations than thle simpler smlg e
instructions of machine language. Therefore, it is much easier to wr;tfa very c}c;mp‘ ex
programs using BASIC. The disadvantage of high level Ian‘guages is 'fih!:;xt they ;1;6
much slower (zbout 1000 times) than machine language routines. This is }?cag;e the
machine language routines are much more specific and do not have to handie the
different contingencies that must be allowed for in the BASIC comands.
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A personal computer is a microcomputer that includes a high level language
operating system. It has only been in the last few years, as the prices of personal
computers have so drastically decreased, that teaching courses in microcomputer
interfacing could be done with personal computers. Until recently, schools could not
afford enough personal computers to have a workable student/ computer ratio for
hands-on experience. Today, schools cannot afford not to have laboratories equipped
to teach computer interfacing. Before this recent turn of events, interfacing was taught
on small microcomputers having very limited memory and using only machine
language.

With a personal computer such as the Timex/Sinclair, the interfacer has the best of
both possible worlds, Simple machine language routines can be incorporated into
BASIC programs with the USR command. They can be used for the very fast
requirements of data acquisition, yet complicated mathematical and display opera-
tions can be performed on that data very easily using the high level language.

INTERFAGING WITH TIMEX/SINCLAIR COMPUTERS

The experiments in this book have been designed to be performed with the Sinclair
ZX81, Spectrum and Timex/Sinclair 1000, 1500, and 2000 computers. The Sinclair

introduced it had 1 XB of WARM and an 8 KB ROM operating system. The
Times/Sinclair 1000 is identical to the Sinclair ZX81 except that it has2 KB of WARM.
Timex subsequently marketed the T51500 in North America with 16 KB of WARM,
and virtually the same 8 KB ROM operating system. These three models all use black-
and-white televisions for display. Throughout this book we shall refer to them as the
B&W models. The Sinclair S pectrum and the Timex/Sinclair 2068 have color display
features and considerably larger operating systems. The Spectrum has 16 KB of
WARM while the Timex/Sinclair 2068 has 48 KB of WARM. The TS2068 hasa 24 KB
ROM operating system providing a total memory allocation of 72 KB for the basic
machine. We shall refer to the Spectrum and TS2000 models as the Color models.
As we shall learn in Chapter4, there are no hardware differences between the B&W
and Color models that will affect our experiments. We have already seen that one of
the major differences in the five models is the amount of WARM memory. Therefore,
the only software difference we need to be concerned about is where to store the
machine code routines we will use with the experiments. The routines themselves will
be identical in operation, however, because there are instances when the program
needs to refer to its own location in memory, there will be some differences in the
values of the code numbers stored in the machine language programs. Fortunately, we
can use one technique for all three B&W models and a second technique for the two
Color models. We shall wait untii Experiment 3.1 (Chapter 3) to give the details of the
two techniques. Suffice it to say at this point that our interfacing experiments can work
with any one of the five Timex/Sinclair computers,
In addition to the computer, the two additional pieces of equipment we will need to
perform our interfacing experiments are a “breadboard” on which to build the circuits

and an interface buffer to connect a circuit to the camputer. The brea}fboard ']Seasl;:;_ll;
that permits easy wiring connections between circuét E;30m];)0f§14€ants. T fef;):z):o\;; T
i i i i board having 64 rows o
use is 2 6.5 inch long by 2.25 inch wide polymer fivesolorless
i i i i f a center channel running lengthw
wire insertion sockets arranged on either side o : e
j i ters, and the distance between opp
on the board. Adjacent rows are on 0.1 inch centers, : i s
i Standard Dual In-line Package
rows across the channel measures 0.3 inch. ; aged (L2
ireui 1 leaving four common wire inse
integrated circuits (IC) can straddle the channe ‘ ' ertion
sockgets available for wiring connections made to eacl.l pin of t}}e mt{:gr?ted;)lr?;;;
{More detailed description for wiring the socket is given in Chap (geh;nd e
breadboard fits neatly either to the side or on the topside of the computer
keyboard. o o
3I/nterfacing experiments require some means of bfl}ggmgil the'a ct;mputf;rczisoaini at:rlll({_i3
i . i i ircui d. The physical conn
ower lines out from its printed circuit boar ' \
Somputer’s lines is made through 46 contacts arrange;_i f rows oft23, coz;itstc(: j)iii 31{;
i i dge of the computer’s p
the top and bottom sides along the right rear e : _
(PCH }i)oaré. We will use a 2 X 23 contact open-ended edge-connector s(c:)ci:icet }éav;lzé
contacts on 0.10 inch centers, which can be inserted onto the computer PC board p
to bring the lines from the computer.

NEVER CONNECT THE EDGE CONNEC'}"OB
TO THE COMPUTER WITH POWER ONI!I

The edge connector should have a keyway inserted on the third pliig gf c?éxt%c;fz f;{;};
i i i 3 into the computer oard.
its left end to ensure alignment with a slot cut in : # ol
i inch wi 3.5 inch high board to provide space
connector is mounted onto a 3 inch wide by > e space for
i ircui ircuit and cable connectors. {The circuit o
the integrated circuits of the buffer circui o i
i i i 4.) Two 14-conductor flat ribbon ca
Interface Buffer will be described in Chapter : .
(Ie}ai; 6 to 9 inches long) plug into IC sockets located at the top of thfe mter'face'z t;oa:'}?e
The cables are terminated on wirewrap 1C sockets for ease 'of msert;onhmt 0 the
breadboard. The wirewrap socket pins also prowfie physical str;mgtb to the
breadboard connection and ease of accessibility to the signals, Thesie 28 fme‘s rltr:)g out
all the properly buffered signals necessary for input/output interfacing
breadboard socket.

NUMBER SYSTEM PRELIMINARIES

Before we proceed to get into the details of digital processing and mlcrﬂc?ngi)(:l::;
fundamentals in the following chapters, it will be to our advantage to sur.mri;anzumber
concepts of numbers. We all can understand what the .value of 2 pa;técu ar n] nmbe
means, and we all know how to represent that value asa line or string Od ecm;a“thri ! -
For example, if vou were asked to write the number “one hundred an twe(riz t)}rl ) whét
you would write the digits 123. You would ex;;gct anﬁ():}l;e eisr; Sto r}zﬁjeé‘ia;rél . ;fumber
s that there is one 100, two 10s, an ree 1s. :
g;s‘ievg?:‘zif)ﬁmon as the fingers on your hands! The decimal system requires t‘hat
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we use a set of ten quantity symbols called numerals: 0,1,2,3,4,5,6,7,8,9; and that we
represent each number valuie by listing from right to left the guantity of ones, tens,
hundreds, thousands, etc. The right-most digit is the smallest or Least Significant Digit
(LSD) and the left-most digit is the largest or Most Significant Digit ( MSD). Each digit
in the list is ten times bigger than its neighbor to the right. The decimal system is said to
be base 10 number system.

When working with computers, there are times when it is necessary to use number
systems other than base 10. In fact, there are four other bases that are handy. These are:
base 2 having the numerals 0 and 1 only; base 8 with numerals 0,1,2,3,4,5,6,and 7;
base 16 with numerals 0,..,9,A,B,C,D, E, F, where we have to introduce six new
number symbols whose decimal values are A(10), B(11), C(12), D(13), E(14), and
F(15); and finally, base 256. No one js about to suggest a list of 256 unique symbols, so
We are content to use up to three-digit decimal representation for the numerals in this
base. Unlike base 10, the four new bases are all integer powers of 9 namely, 2,2%°3,
2**4 and 2% %8 in Increasing base order. The symbol ** is one way to denote a
number raised to a power. It is used in Sinclair BASIC. For example, 2* * 3 means to
multiply 2 by itself three times: 9 2%2=8. The ® symbol is used in computer
programming to indicate the multiplication sign.

The trick to dealing with the different number base systems is to apply the rules for
representing a number value in a manner consistent with your experience in using the

to find in a carton of eggs; but the representation of the value of a dozen will differ in
each base: for these systems it becomes 1100 (base 2),14 (base8), C (base 163,12 (base

2583, and, naturally, 12 {bhase 10}. The values, for example, of the digit positions in a
three-digit number are:

BASE MSD £8D
10 100 10 1
2 4 2 1
8 84 8 1
16 256 16 1
256 65536 256 1

We can also rewrite this table in 4 more systematic way as:

BASE  MSD LSD

10 10**2 10**1 10**¢
2 2**2 2**1 2**0
8 g**2 8**1 80
16 16**2  16**1 16**0p
256  256**2 256**1 256" *0,

because any number raised to 2 power of 0 is 1. We see the value of the digit in a
particular position is the base raised to an exponent denoting that position.

Bits and Pieces

All of this new numbering is a consequence of the fact that microcompute@ a.ct_uai%y
deal with 8 and 16 base 2 (binary) digit numbers. Another name for a binfzry digit is bit,
and the name for an eight-bit number is byte. If we consider an eight-bit number asa
set of eight boxes and recall that each box may only hold a 1 (full) or0 (empty), we f.md
that we actually have the equivalent to a number base of 256. Thehlargest pos_sfnle
number is when each bit is a 1, and because the values of each box (bit) progressively
double from right to left, it will be the sum of all bit values or 255:

MSB LS8

BIT D7 D6 D5 D4 D3 D2 D1 Do

NUMBER 1 1 1 1 1 1 1 1
VALUE 128 + 644 32+ 16+ 8+ 4+ 2+ 1 =255

If we divide the boxes into 2 four-bit numbers, we have converted to the
hexadecimal number system ({base 16):

1111 1111

and the number is represented as FF, still equal to the decimal number of 255 because

(15 X 16) + (15 > 1} = 255. .
Finally, if we sort into three-bit groups, we obtain:

11 111 111
3 7 7

where although we are short one bit on the left group, we still have converted the byf':e
to the octal number system {(base 8). The decimal value of the number is
+ (7T X 8) + (7 X 1) =255,

. Eaéi) of Ehese t)hree(a ways of representing numbers has some useful purpose v»}flhen
working with computers. We shall see the importanc? of binary numbers throuis_:;; out
Chapter 2 and again in Chapter 3 when we describe how a computer performs
mathematical operations. Also in Chapter 3 we will use the {l)ctal number system to
illustrate the logic of the programming instructions of machine lan'guag.e. When wg
discuss writing programs in BASIC having machine language routines in C%]ia;pter
and the interfacing experiments in Chapters 4, 5, and 6, base 256 numbe@ will prove
useful. We will not have occasion to use the hexadecimal (usualliy abb'revxate,?d HEX)
system, but should point out that it is the most common s?fstem_m use in the i:telrature
because it saves space when printing lists of byte vaiue_s..'l he HEX values uie only two
digits per byte, whereas decimal and octal use three digits, and, of course, binary uses

eight digits.

NUMBERS AND CODES

Binary numbers are more than just numbers to a computer, they also serveas cpdes. A
code is just one set of symbols used to represent another set of symbols. The s;mples’c
binary code is the Binary Coded Decimal (BCD) code. Here we use a set of bits to
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represent the decimal numerals. Because there are ten numerals, we need four bits in
the BCD code. In fact, BCD is identical to the hexadecimal number system except the
BCD code does not use the highest six HEX codes (numerals A through F).

Another code uses seven bits to represent all the upper and lower case letters
numbfzrs, symbols, and punctuation marks used in ordinary writing. This code is th(;
American Standard Code for Information Interchange (ASCII; pronounced As’-key)
Actual.ly,. because seven bits allows 198 different code symbols, there are 32;
nonprinting codes included in ASCI, such as backspace and carriage return found on
a typewriter. ASCII is listed in Appendix A, Chart A 6.
' One .of the most important codes is the set of eight-bit numbers that forms the
mstruction code for the microprocessor in the computer. This code is the machine
lar'lguage of the computer. It controls the specific sequence of actions that the
microprocessor performs that we consider an operation or instruction.

The concept of coding is very important to computer operation. Of course, a code
must always be used in its proper context. It would make no sense to use a’byte to
represent two (packed) four-bit BCD numbers, say 74 =01110100, when the

code expected is ASCII, where 01110100 = r Th .
. > =, t ;
English to a German (nein? or nine?). at would be like speaking

020

digital electronics

DIGITAL SIGNALS

Digital signals are the signals by which microprocessors communicate with each part
of the microcomputer system: the memory, the keyboard, and the display. Digital
signals are also used for the purpose of data transfer or control between instruments,
between computers, and with the outside world.

Just how are digital signals different from our normal everyday perception of how
electronic (or any other) devices communicate with each other, and why is it
important to understand exactly the nature of digital signals?

In trying to answer such a question, first let us take a look at how information can be
transmitted. Take, for example, a temperature sensor, a common type being the
mercury in glass thermometer. As the temperature rises, the mercury expands nearly
linearly so that the mercury column rises up a graduated scale indicating the
temperature. The thermometer is an instrument which cornmunicates information to
us, the temperature of our surroundings, visually by the length of the mercury column.
Now consider another common type of temperature transducer such as an electric
thermometer, which could use a thermocouple or thermistor as the temperature
sensor. With such a measuring instrument it is not possible for us to visualize directly
the temperature of the transducer because we cannot see the electric currents which
are flowing in the circuits connected to the transducer. Instead, use is made of
electronics to transform the electric signals to drive the needle across the scale on a
meter. Now again, as the temperature increases, the needle moves gradually across the
scale of the meter indicating ever-increasing values as the temperature rises.

The preceding discussion has described the communication of information by
means of analog signals. That is, the response of the instrument is a smooth gradual
variation of the output indicator—the length of the mercury colummn or the movement
of a meter needle—as the input variable, temperature, changes.

Digital signals are quite different from the above examples, and we can draw on
another everyday analogy by considering the action of the temperature or oil pressure
indicators in an automobile. These are often small red lights on the instrument panel
and should the temperature of the engine coolant become too great or should the oil
level become too low the warning lights will turn on. The situation is one of discrete
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infprmation where at one instant of time the temperature of the coolant is apparently
quite normal and at the next instant it is not. The information from the temperature
transducer has been conveyed to us in the following manner:

WARNING LIGHT COQOLANT TEMPERATURE
Not it Normal
Lit Too hot

t!’his instrument warning light provides us with an example of communication of
fnformation by means of digital signals: either your coolant temperature isnormal or it
is not. It is a good example of the on/off technique.

We can now consider how electric signals are transferred from one instrument to
another by electronic circuits. In the case of digital electronic signals we use only two
states to describe the type of information that is to be transmitted. We could use the
presence or absence of a voltage level in the circuit or we could use the flow of current
or no flow of current as the indicator of our two digital states. The case of current flow
extends easily from our warning light example in which the light will be lit when
current flows, and the light will not be lit when current ceases to flow.

lf‘ or our future use we will take the presence or absence of a voltage levelin a circuit
to indicate one or the other of the digital states and also define the voltage levels
needed to specify these two states. The voltage level corresponding to the digital
state of the light being lit will be taken as +5 V. The voltage level corresponding to
the digital state of the light not being lit will be taken as 0 V, that is, at earth or ground
potential.

Why are digital signals used as the means of communication between certain types
of electronic equipment such as microcomputers? The answer to this question is tied
up with an understanding of how electronic circuits function. It is relatively easy for
electronic circuits to distinguish, with 100% reliability, between the two digital states
corresponding to voltage levels of +5 V and 0 V, but it is not easy for electronic circuits
to distinguish with 100% certainty between two analog voltage levels such as 3.685 V
and 3.681 V. Consequently, digital microcomputers can give this sort of insurance. In
summary, digital signals will be represented by two voltage levels, namely +5V and 0
V. The reader should be aware that other voltage levels can be defined, but, for our
purposes, the above representation is sufficient.

INTEGRATED CIRCUITS

The electronic circuits that are constructed to work with digital signals take on various
functions as will be described in the later sections. Because these functions involve
many duplicated circuits, the construction of such circuits lends itself to integrated
fabrication. It is not the purpose of this text to provide an in-depth coverage on how
@tegrated circuits are fabricated. Suffice it to say that integrated circuits (IC) often
involve the fabrication, on a single chip of silicon, of a large number of similar circuits
§uch as the common-emitter transistor amplifier and other electronic circuits and
include coupling capacitors, bias resistors, and other components necessary to have
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the circuit perform properly. These chips are packaged in Dual In-Line plastic (or
ceramic) packages {DIL or DIP} with typically from 14 to 40 pins in two parallel rows.
There are a few DIPs that have only eight pins but these are usually integrated analog
circuits referred to as linear ICs.

Microprocessor chips often have tens of thousands of transistors on a single chip
making up a very comaplex circuit. Even so, were you able to probe about inside the
circuit while it was operating, the only two voltages vou would observe would be -+5
V and 0 V. In actual practice, the ideal voltages of +3 and 0 V for the two digital states
are approximations only with one digital state corresponding to voltage levels above
about 3.5 V and the other digital state corresponding to voltage levels below 1.5 V.

Some other terms are often used to describe the particular digital integrated circuits
discussed in the preceding paragraphs. One term in particular is TTL, which stands for
Transistor-Transistor Logic which reflects the fact that many of the digital integrated
circuits use a pair of transistors as the basic active component. These circuits are
standardized with series nuinbers denoted by the 7400 series of digital ICs. They are
fast in operation with propagation times on the order of 10 nanoseconds {ten billionths
of a second between input and output) for the simpler elements and use comparatively
large amounts of current having a rating of 16 mA per output and 1.6 mA per input.
Another series in the TTL family is the Low-power Shottky (LS) series denoted by the
74LS00 series of numbers. These ICs are about as fast as the regular 7400 series but
have one-half the current drive for outputs and one-fourth the current requirements
for inputs as the regular 7400 series.

The experiments described in this book will use almost exclusively LS integrated
circuits because of the lower amount of power consumed and hence ensure that most
experiments can be carried out using only the Timex/Sinclair power supply: one of the
prime objectives for a low-cost interface unit.

Other classes of digital integrated circuits include CMOS {complementary metal
oxide semiconductor), RTL (resistor-transistor logic), and ECL (emitter-coupled
logic). Apart from CMOS, which also draw small amounts of current, we willnot have
occasion or need to use these other classes. It should be mentioned that CMOS are
capable of operating at higher voltages than TTL.

There are several hundred specific integrated cireuits in the TTL family of digital
chips having Series Numbers 74X XX in the regular family and 74L.S XXX in the Low-
power Schottky family where the XXX represents a two- or three-digit number. It
makes digital circuit design much easier when you realize that most of these chips fall
into one of about 12 classes. Each class performs one type of function. The following
Hst gives the functional names of the most common circuit classes:

Buffers/inverters

Gates

Flip-flops/latches

Shift registers
Decoders/demultiplexers
Data selectors/multiplexers
Encoders

~1 D TR O DD e
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§ Counters

9 Monostables
10 Digital comparators
11 Arithmetic logic units
12 Memory registers

Within each class, there are many specific ICs, each having a unique series number
afzd performing its function in a particular way. We shall see that each series number
circuit meets three sets of specifications. The first is the so-called pin-out diagram,
which is a schematic figure of the integrated circuit and shows the assignment of each
pin to a specific function as input, output, or power. The second is a truth table, which
gives the state of each output connection for all permutations of logic states at the input
connections. (Remember that there are only two possible logic states for inputs and
outputs.) The third set of specifications is timing diagrams. These provide information
on the time relations between changes in the logic states of input and output
connections for the integrated circuit. These specifications are available from the chikp
manufacturer’s literatare, such as the Texas Instruments TTL Data Book for Design
Engineers.

We shall devote the rest of this chapter to a discussion of several of the classes of
TTL LS circuits, which we will need to use and understand.

BUFFERS AND INVERTERS

A buffer means exactly what it says: a go-between, a softener of heavy blows, etc. In
microcomputing, buffers are particular types of integrated circuits used to isolate your
experimental circuits from the intricate electronic operations of the microcomputer
you are connected to {interfaced). In this way mistakes you make in your circuit
connections are unlikely to damage {“burn up” is the expression often used) your
?recious microcomputer. So if the interface has been designed correctly using buffer
integrated circuits then you can experiment quite happily in the knowledge that you
can’t normally harm your micro, even if you do apply power the wrong way around to
some of your integrated circuits, which we have all done at one time or another.

The buffer integrated circuit is essentially made up of a transistor amplifier. The
transistor is a three-terminal device, which has an input lead called the base and output
and power supply leads connected to the other terminals called the collector and
emitter. The transistor action ensures electrical isolation of output signals from input
signals and is also capable of amplifying an input signal in current strength so that a
number of other transistor-type integrated circuits can be attached to it electrically
without making unfair power demands on the original signal.

' A second type of buffer to consider is the NOT buffer or more simply the Inverter.
lee the noninverting buffer, the inverter only has one input and one outputand a very
?)rlef f:'ruth table. It is shown in Figure 2.1 together with the truth table. Note the
inversion circle on the output lead. This inversion circle will appear on many digital
circuit diagrams. The triangular symbol is that for an electronic amplifier or
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Figure 2.1 Inverter Diagram and Truth Table.

noninverting buffer; the inversion circle on the output indicates that when the
amplifier has a logic 1 output the inverter itself will have a logic 0 output and vice
versa. The inverter is fabricated in a Hex (six independent} Inverter integrated circuit
type 74L.504.

In summary, buffers can then act as current amplifiers and also as voltage inverters
(phase inverters), that is a digital voltage of +5-V input to a particular type of buffer
will result in a 0-V output from the buffer, that is the opposite digital state. Such a
buffer is called an inverter.

GATES

A knowledge of digital gates is essential to being able to understand clearly how
interfacing and experiments can be accomplished using a microcomputer. We will
spend a little time reviewing what a gate is and outline numerous examples of the use
of gates in the remainder of the book. You have already seen that digital signals are of
two values only, +5V and 0 V. These two voltage levels can be expressed as two logic
states 1 and 0 where we will choose what is known as the positive logic equivalence,
that is:

+5 V is equivalent to the logic state 1;
and, 0V is.equivalent to the logic stale 0.

Gates are electronic circuits which allow certain combinations of the logic states
input to the gate to produce particular output logic states.

As an example, let us consider the logic AND gate. This gate will have two inputs,
which could be labeled A and B, and an output labeled Q. The electronic symbol is

shown in Figure 2.2

. —
D
B 3

Figure 2.2 Diagram of an AND Gate.
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Figure 2.3 Switches in Series,

When different combinations of digital signals are applied to the inputs A and B, the
output Q takes on only certain resultant digital states. To visualize this relationship,
consider the simple circuit of switches in series shown in Figure 2.3, which represents
an electrical analogy of the AND gate.

We will consider that an open switch is equivalent to the logic 0 state (no current
tlowing) and vice versa. For the resultant output of this circuit we have a small lamp Q,
which can either be lit or not lit depending on whether voltage is applied to it or not
(voltage will be applied to the lamp when current flows),

It should be clear that if switch A is open {0 state) and switch B is closed (the
opposite 1 state) then no voltage will be applied to Q so it will remain unlit (logic 0
state). And again if switch A is closed (logic 1 state} and switch B is open (logic0 state)
then Q will still remain unlit. Only if switch A is closed AND switch B is closed will the
combination result in lamp Q being Jit. This can most easily be described using a truth
table which tabulates the relationships between the inputs A and B and the output of
the gate Q. The truth table is:

AND GATE LOGIC
INPUTS  QUTPUT STATEMENT
A B Q AXB=0Q

0 0 0
it 0 0
g 1 0
T 1 = Unique State

The last line gives the truth of the AND statement, that is, the output state is true
(logic 1 state) only if both the logic states of A AND B are true. The AND gate is
fabricated in a quad (four independent) Two-Input And Gate integrated circuit type
741.508, where you could use a voltmeter or logic probe to test the truth table of each
gate,

Another example is the logic OR gate, shown in Figure2.4. The action of this circuit
is explained in the electrical circuit shown in Figure 2.5,

In this circuit the two switches are in parallel so that if either switch A OR switch B is
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Figure 2.4  Diagram of an OR Gale,

in the logic 1 state (closed), then the lamp Q also will be in the logic 1 state (Lit).
Expressed in a truth table the relationships between the logic states would be:

OR GATE LOGIC
INPUTS  QUTPUT STATEMENT
A B Q A+B=Q
O 0 0 = Unigue State

1 0 1
0 1 1
11 1

The logic relations of the OR gate are quite different from those of the AND gate.
Use will be made of both functions later. The OR gate is fabricated in a Quad Two-
Input OR Gate integrated circuit type 741.832.

The inverter can be combined with both the AND and OR gatesto produce NAND
and NOR functions. The electronic symbols for these gates are shown in Figure 2.64
(NAND) and Figure 2.6b (NOR) together with their truth tables.

Note that for corresponding inputs, the output of the NAND gate is opposite
{(inverted) to that of the AND gate, and the output of the NOR gate is inverted to that
of the OR gate. Inversion is also referred to as negation. The Quad Two-Input NAND
gate is fabricated in an integrated circuit type 74LS00 and the Quad Two-Input NOR
gate is fabricated in an integrated circuit type 74L502.

e

f SW A I |
A7
SwW B

. {o LAMP
BATTERY ~—— a

Figure 2.5 Switches in Parallel
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Another vseful gate is the EXCLUSIVE OR gate whose circuit symbol and truth 5
table appear in Figure 2.7. : :
Examples of the applications of the above gates will be given in the next section. It

should also be noted that the number of inputs to any gate is not restricted to two only, | NOR (NOT OR) Gate
you can have three-input, four-input, and eight-input gates, but the unique state of '
each truth table remains the same. ; INPUTS OUTPUT
: A B Q
0 0 1 =Unique State
GATING AND DECODING 0 1 0
When microcomputers are used to control or interact with circuits to which they are 1 0 0
interfaced it becomes necessary to gate particular control signals together to activate 1 1 0

other integrated circuits at specific moments throughout the running of the micro- '

computer program. Figure 2.60
By gating we mean exactly the same as opening and closing a fence gate toallow or

prevent the passage of a person. In the electronic gate the action will be to prevent data

from passing from an input to an output or to allow the passage of such data. In other

words our gate will act as a control over the passage of data or “Enable” the passage of

data as indicated in Figure 2.8. Because the inputs to a gate are equivalent, the input

that is called the data and that which is called the control is arbitrary and depends only
on the user’s point of view.

Often two different control signals will be logically combined by a gate and a
unique output signal will only exist when the control signal applied to the one input
enables the control signal applied to the other input. As has already been discussed, the
microprocessor uses control signals to access memory locations, read the keyboard,

, output data to the video screen, and so on. Because the microcomputer can only
' handle one task at a time, the same control signals should not be allowed to activate

 — _ two devices at once, hence it is necessary to gate certain control signals together to
_>)‘_ Q provide unique combinations of signals for use by the various circuits connected all the
B - time to the microprocessor.
To give you an idea of how this works imagine that you have 16 different machines
NAND (NOT AND) Gate in your home which are to be controlled by the microcomputer. The microcomputer
INPUTS OUTPUT will decide when each machine should be turned on or off and how fong each machine
should stay on or off. Obviously we would not want the home heater running at the
A B Q same time that the air conditioner is operating, so the microcomputer must be
0 0 1 provided with a unigue identification code {address) for each device.
This can be accomplished through a channel selector integrated circuit such as the
0 1 1 four-channel to sixteen-channel 7418154 decoder/ demultiplexer shown in Figure 2.9.
1 0 1 _ You will note that there are four address inputs A, B, C, and D) and 16 output
: channels. There are two gating control inputs, G1 and G2. Whenever both are held
1 1 0 =Unique State

low, logic 0 state, the IC will be enabled. But we have 18 ocutput channels so how can
Figure 262 NANU (NOT AND; Gate and NOR (NOT OR) Gate. the micraprocessor tell the decoder chip which channel should be selected?
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DATA -
A Q ) o
B i

GATE ENABLE

INPUTS OQUTPUT LOGIC STATEMENT OR
AB Q A<+>B = Q CONTROL
Figure 2.8 Gating Input for Controj,

00 0 When both inputs are the same,
10 1 then the output is a logic 0. !
0 1 No single unique state. ;

’ ( LATCHES AND REGISTERS
11 0

A latch integrated circuit “latches on” to a data signal and holds the Eog‘ic state 'of the
data at its output. A latch requires an enable control input, in addition to its data input,
to signal the chip when to latch the data. This control input is either a c{gclf ora gate
input depending on how the specific latch circuit operates. The latch IC is important

Figure 2.7 EXCLUSIVE OR Gats,

This is accomplished through the four address inputs A, B, C, and D to which . because it extends the lifetime of a data signal, which itself may be of very sh‘ort
different binary codes can be applied. By starting with all address inputs LOW (0 V), I duration. The output of a latch retains the state of a previous data input until a
channel 0 will be selected as shown below. subsequent control pulse input causes it to reread the present logic state of the data

input line. In this respect, a latch is a one-bit memory. Such latches are called D-type

INPUTS CHANNEL

DCBA 01 23 456 7 8 9101112131415 $5YV e

000 {)1?11?111111‘!111 %

00011011?11??11??13? »

003811(}1111111‘!11111 15-1

0013111011?11??11111 I A T -

Do S R ‘ CHANNEL —_pw— B —

LA A A R N A T T T T T R R S N ADDRESS -

| INPUTS  —W © ——- 1 DIFFERENT

As the binary code applied to the address inputs is sequenced through 0000 to 1111, o ed [ o - DATA OUTPUT
each channel in turn will be selected, and the output at that channel will gotothe active I CHANNELS
logic 0 state. All other channels will be in their inactive logic 1 state. If either or both of ) ”
the gate control inputs are in the logic 1 state then all 16 output channels will be in their 154 -
inactive logic 1 states, b

The 741.8154 functions as a decoder by substituting the set of four input signalsfora _ "“"‘b"-
set of 16 output signals (i.e., one set of symbols for another set of symbols). Of course, YOi"'—‘»‘
the new code is just a combination of 1 zero and 15 ones but it serves to select and Gt * G2*
activate one of 16 lines. If we wanted to transmit a sequence of data bits to any one of J7
the 16 output channels we could feed that data to one of the gate inputs, G or G2. _ﬂ_ﬂ_ o
Then, assuming G1 was the data imput line and G2 was enabled, when the address
inputs held the channel number, every logic 0 data bit and logic 1 data bit would be DATA INPUT

output at the selected channel in sequence. This use of directing a stream of data to one

i ) 7481 i Tod
of many channels is called demultiplexing, Figure 2.9 745754 Schematic
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latches where the D originally referred to delay but more currently is used to mean
data. D-type latches often are designed with two outputs, which are complementary
and are labeled Q and Q®. Q* is always the inverse (negation or complement) of Q;
that is, when Q is 0, Q* is 1 and vice versa. Many D-type latches also are designed wit};
two additional control inputs labeled Preset and Clear. Logic 0 signals on either of

the?:e inputs take priority over the enable input and force the Q output to alogicl and
logic 0 respectively.

CLRa 1 [ 1 14 Vee Q*a 1 ]
DATAa 2 [ a J’ZJ 13 CLRb  DATAa 2 [
CLKa 3 [TH—» [—Zl 12 DATAb DATAb 3 [1 _
SETa 4 [ CLKb ENcd 4 [] <
Qa 5 [H SETb Vee 5 [ lﬁ‘ ~] 12 GND
Q*a 6 [H Qb DATAC 6 [] - 11 Q%
GND 7 [] Q*b  DATAd 7 [:J d _, ¢ 1\[3 10 Qe
Q*d 8 ] - 9Qd
'74 75
(each latch) {each latch)
.......... INPUTS-ecmmmreme QUTPUTS === INPUTS ------- OUTPUTS
SET CLR CLK DATA Q Q* EN DATA Q Q*
0 1 X X 1 0 0 X Qo Q%o
1 0 X X 0 1 1 0 0o 1
C 0 X X 17 12 11 1 0
1 t /7 1 10
1 1 /- 0 8] 1
1 1 0 X Qo Qo*

Figure 210 Data Latch Pin-outs and Truth Tables.
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Figure 211 Data Latch Timing Diagrams.

The T4LST4 and T4LS75 D-type latches are representative of this type of circuit.
Figure 2.10 gives the pin-outs and truth tables of both. The obvious differences
between the two ICs are that the 741874 is a Dual D-type Latch having Preset and
Clear and complementary outputs, whereas the 741875 is a Quad D-type Latch having
only complementary ocutputs. More significantly, these ICs illustrate the difference
between Clock and Gate data input controls. The 74L874°s Clock latch control is
positive-edge triggered. This means that as the clock signal changes fromalogicOtoa
logic 1, the data at the D input is laiched at the Q output. The T41.875’s Gate enable, on
the other hand, is active in the logic 1 state. This means that if D changes when the G
input is high (logic 1}, then @ will “follow” and change also. Q is not latched until the
negative edge of G (i.e. when G changes from a logic 1 to alogic 0 and the latch is
disabled). Figure 2.11 illustrates the difference in the two latches by showing how the
Q of each responds to a busy data line. Typically, latches whose control input is a
Clock input are also referred to as flip-flops.

There are several other types of flip-flops and latches in the T'TL series which we
will not consider because of their limited usefulness in computer interfacing. To
mention two by name, there are Reset-Set or R-S§ flip-flops and also J-K flip-flops,
neither of which has a Data input, but both are used in combining various control
signals to create their output signal. There are also many other series numbers which
incorporate latches that behave like those in the 741874 and 741575 ICs. When several
latches are controlled by a common (single) enable signal, they are referred to as
registers, We shall use the T4LS373 Octal D-type Latch as an eight-bit register in
Chapter 4.

The difference between gating logic and clocked logic is an important distinction.
Many of the other classes of integrated circuits use one or the other of these for their
enabling technique. Generally when the enabling control input is labeled G (or EN},
the circuit is enabled as long as the control input is in its active logic state; when it is
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labeled CK, the circuit carries out its operation on the rising (positive) or falling
(negative) edge of the signal transition. Truth tables for clocked devices will have
entries for positive or negative edge-triggered control inputs represented by up-

arrows or step-ups or by down-arrows or step-downs (reading from left to right)
respectively.

COUNTERS

A counter integrated circuit counts pulses arriving at its input. Because this is a digital
counter, it would require four output lines to store a count up to 13 (decimal). The
outputs are typically labeled A, B, C, and D, where A is the least significant bitand D is
the most significant bit. Thus when an outputisalogicl, Aisworthl, Bis worth2, Cis
worth4, and D is worth 8. Obviously, all four bits must be read to know the value of the
count. The major elements in the circuitry of a counter are flip-flops. The most
common 74X X and 74LSXX counters are the 90, 92, and "93 which count to base 10,
12, and 18 respectively. Actually, each of these ICs consists of two counters; oneis a

binary or “divide-by-two” counter, while the otheris a 3,6, and 8 counter respectively.

Because there are two counters on each IC, there are two inputs. The A output is the
output of the binary counter; when it is connected to the input of the second counter in

 the circuit (labeled Input B), then all four outputs DA hold the four-bit count. The

741590 is a decimal counter, which means it counts from 0000 to 1061 (9 in decimal).
Like the odometer in an automobile, the next count after 9 is 0. Figure 2.12 illustrates
the timing diagram of the 74L890’s otutputs when the A input receives a train of clock
pulses and output A is connected to the B input. If we read the logic states of the D-A
outputs vertically, we find the four-bit binary-coded decimal {BCD) code. There are
two important features you should observe about this timing diagram. First, count the
number of pulses at the A input and the number of pulses at the A output. You should
get ten and five respectively. Thus the output has divided the input by two: this is why
the first counter is called a “divide-by-two.” Now compare the number of pulses at
input B with the number of pulses at output D: the second counter in the 74L.S90 is a
divide-by-five. Of course, with the two internal counters connected in series
{cascaded ), the counter is a divide-by-ten.

The second observation we can make about the timing diagram in Figure 2.12 is that
the inputs are Clock inputs, which are active on the negative (falling) edge. It is not
until the input pulse falls from logic 1 to logic O that the counter actually advances the
logic states of the outputs. If we have two 741890 ICs, we can cascade them by
connecting the D output of the first to the A input of the second. Now, everytime the
first “rolls-over” and the 9 returns to 0, the second will increment its count. In this
manner we could count from 0 to 99. Each additional ‘90 added by cascading gives
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Figure 2.12 Decimal Counter Diagram.

another decimal digit. This is possible because it is the falling edge of the IJ output
hich “clocks” the count of the next counter. '
" {ljcnh'ke the 741890 whose D output returns to 0 after the count of 9, the 741.593 is ;
full four-bit counter. Its D output remains in the logic0 state.for cogntsO t}lrough 7 a% d
then goes into the logic 1 state for counts 8 through 15. The pin configurations of the

and 93 are shown in Figure 2.13.

1 14 IN A
iNB 1 O L £ (114 IN A INB 1 1 &
Roa 2 {7 ] [13nc Roa 2 [ 1 [J13nc
rob 3 112 QA Rob 3 [ :;mzcm
nc 4 [ 111 QD nc 4 O 1 11 QD
vee 5 [ ] 10 GND vee 5 [ 1 10 GND
RY%a 6 E-r ] 9QB nc 6 O ] 9QB
C
R9b 7 E—J- 8 QC nc 7 ] -] 8Q
80 '93

Figure 2.13 Pin-outs of '8G and '93 Counters.
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The three counter ICs described have additional control inputs, RO(1) and RO(2),
plus an additional pair on the 90, R9(1) and R9(2}. Various logic states placed on these
control lines will reset the counter outputs to 0 or 9. The truth tables for these controls
are:

RO(1) RO(2) R9(1) R2) A B C D

‘90 1 1 0 X 0 0 0 O

1 1 X g ¢ 0 0 O

X X 1 1 10 0 1

62, '93: 1 1 not applicabie 0 0 0 0

where X is a “don’t care” or irrelevant state. For all three ICs, for any other
combination of logic states at the reset inputs, the input pulses will be counted.

TIMERS

Like eounting, one of the more widespread applications of digital electronics is timing.
A clock pulse is defined as a transition from one logic state to the other and back to the
first. A positive clock pulse is 0 V to +5 V to 0 V. A negative clock pulseis +53V to0V
to +5 V. Clock pulses can be generated electronically with Monostable ICs or

manually with a switch. The IC is called monostable becauseits outputis stable in only

one state. When it is triggered it goes into its unstable logic state, stays there fora brief
(determined) time, ¢, and then falls back into its stable logic state. In the process, of
course, it has generated a single clock pulse. There are several TTL Monostable ICs
such as the 74121, 7418122, and 74L.5123. The duration of the clock pulse when the IC
is triggered {by another clock pulse at a control input pin) is determined by the values
of an external resistor and capacitor connected to two pins on the IC. For example, the
74121 can be adjusted to put out a pulse ranging between 40 nanoseconds and 28
seconds. The duration, ¢ in seconds, of the 'LS122 and 'L.S123 clock pulses can be
calculated from the equation:

1=045-R+*C

where R is in ohms and C is in farads (C must be greater than 1000 pF for the equation
to be valid)}. The pin configuration of the 74121 is shown in Figure 2.14a.

There is another IC which, although not a TTL chip, can be operated between+3V
and Ground and is, therefore, TTL compatible. This IC is the eight-pin 555 Timer or
the 14-pin 556 Dual 555-type Timer shown in Figure 2.14b. The 555 can be wired to
work either as a monostable or as an astable multivibrator. Astable means that neither
logic state of the output is stable. Therefore when it jumps into a logic state of 1 it stays
for a period, (1), then jumps into a logic state of 0, but it is not stable here either, so
after another period, #(0), it jumps back to a logic state of 1 and repeats the process all
over again. It therefore continues to vibrate back and forth between logic states. As it

Digitai Electronics 25

Q* 1 [f 114 Vee DSC 1[C 114 Ve

nc 2 113 ne  THR 2[] 113 Discharge

A1 32 112 nc CTL 303 112 Threshold

A2 4 111 Rex RES 4 ] 11 Control V

B &L i{:}to Cex OUT 5[ 110 Reset

a 6 [] S 9 Rin TRG 6 - —1 9 Output
GND 7 E_LJ ] [18n GND7[ 1 8 Trigger

121 556

Figure 2.14 74121 and 556 Pin-outs.

does so, it creates a train of clock pulses. Thus, as we have seen, the astable
multivibrator is a square wave generator.

When the 555 is wired as a monostable, it requires a resistor, R(a), and a capacitor,
C. The duration in seconds of the logic 1 state, £, is calculated by the formula:

t=in 3+R(@+*C
= 1.1 « R(a) « C seconds
when R is in ohms and C is in farads. Alternately, if R is in kiloohms and C is in
microfarads, then f is measured in milliseconds.
When the 555 is wired as an astable multivibrator, it requires two resistors, R{a) and
R{b), and one capacitor, C. The duration of the logic 1 state, #(1), is calculated from:

H1)y= In 2+ (R(a) + R(b}} C
Milliseconds = 0.7 * kiloohms = microfarads

and the duration of the logic 0 state, #0), is:
(0y=iin2+«R{D)~C
with the same units as previously. The total period of one complete clock pulse is:
T =1{0) + 1(1),
and the frequency (f) of the square wave in hertz (cycles per second) is:
f=1/T.

1f T is in milliseconds, then f is in kilohertz, We shall have use for both of these circuits
in our counting experiments.
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THREE-STATE BUFFERS

Although an output signal of an IC can be connected to several inputs, two or more
outputs cannot be connected to one input. If two outputs were connectéd to one input
anc} one was in a logic 1 state and the other in a logic 0 state, the +5 V of the lo f; 1
connegted to the 0 V of the logic 0 would be a short-circuit and probably burn outgone
of the 1n§egrated circuits. We shall see that the microcomputer needs to have many IC
%utpult mgngls share a common signal lead {called a bus line) into the microprocessor.
o solve thls_ problem of connecting outputs together, integrated circuits have been
specially designed that function Iike switches. These ICs are called three-state buffers
The three states correspond to the usual logic 1 and logic 0 states when the buffer is.;
zr:é‘rr)lled (when the switch is closed ) and to a high impedance state when the switch is
‘fou will have }it‘tie difficulty understanding the concept of three states once you
{rie? ize that the qulc 0. state {0 V) is a real condition and a legitimate signal which is
i feren? from a “no signal” or disconnected state. A three-state device permits the
output signal of an IC to be isolated from the output connection of the device in the
same manner as if the output lead were physically disconnected. Of course, the output
lead is not physically disconnected but electronically disconnected by n;eans ofpan
extra control signal applied to the three-state device. Whereas the ordinary buffer has
one mput and‘ one output, the three-state buffer has an additional enabling control
input line that “throws the switch.” The logic state of the enable gate may be either 1
0 (%{::pending on the specific series number of the IC. 01’
. lge 7415125 and 7418126 are Quad Bus Buffer Gates. The '125 is enabled by a logic
. :itg \t;]e 126 is enabled by a logic 1. The pin-outs of the two ICs are shown in Figure
15. Many ICs of other classes are available with built-in three-state buffers. One
example is the 7415373 Octal Latch mentioned earlier whose eight outputs ar t.h
state and enabled by a single control input. ’ S

10 ] 14 Vee O 14 vee
2E—-[$' 113 25% 113
a[] lg:}m 3] l_g}:_-_]m

4[]

- 40 —7 11

scﬁ 5 10 55% o

6] gj 9 6 &] 9

GND7[C -] 8 GND7[ -1 8
'125 126

Figure 215 Three-State Buffer Pin-outs.
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Figure 216  Layoul of Breadboard.

HARDWARE AND TOOLS

As we already mentioned in Chapter 1, the interfacing experiments require a
breadboard socket for wiring the circuits. In addition to the 64 rows of five common
tie points on either side of the center channel, there are four rows in two sections each
of 25 common tie points that run lengthwise along the outer edge of the breadboard.
These rows are used as power rails. Always wire up the socket board so that the outside
horizontal rails both at the top and bottom of the board are wired up for +5V and the
inside horizontal rails for 0 V as shown below. The connections of the tie points are
shown in Figure 2.16. Note that jumpers on the power rails must be made at the center
of the board and at one of the ends.

By using standard DIP integrated circuits, the solderless breadboarding socket
allows rapid wiring of the experiments. Insertion of the chips is not difficult aslongas
all the pins are straight. Use alittle force and rock the chip across the board backwards
and Forwards to seat them in the spring-loaded holes of the socket board. The chips
then insert easily in a horizontal direction symmetrically across the center channe) of
the board. Four spring-loaded sockets will then be available in a vertical direction to
each pin of the chip. Use a small screwdriver inserted under the integrated circuit
chips to lever upwards gently whenremoving them from your socket board. Failure to
do this usually results in bent pins on the chips or punctured fingers.

Circuitry in all our experiments will be very straightforward with the use of
connecting lengths of single stranded plastic covered, 22 B & S gauge wire {0.08 mm
wire diameter). Use of at least ten colors of wire is recommended to facilitate finding
incorrect connections when all the wire connections in your circuit diagrams are color
coded. Adherence to a color code for each experiment will assist you to find and
correct wiring errors. Pay special attention to using red colored wire ONLY for +5-V
connections and if possible black wire ONLY for earth or 0-V connections. In this way
it is easy to check circuits for chips inserted the wrong way around or power
incorrectly connected to the chips. The other eight colors can be used for the bus lines
and various control lines.
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When stri;ﬁping the single stranded colored wire, only leave about 5 mm (0.2 inch)
of wire exposed at either end. Too much exposed wire could lead to short circuits
when many wires are used in an experiment. A suggested color code could be:

Red +5V Power
Black 0V Ground
Brown/Orange/Grey/White Control lines
Yellow/Green/Blue/Violet Bus lines

Cost savings can be achieved by purchasing large reels of different colored wires

rather than buying prepackaged wires cut to specific lengths. The following tools are
required:

1 Long nosed pliers
2 Wire cutters

3 Wire strippers

4 Small screwdriver

A small-tipped, 15-watt soldering iron will also be useful if you intend assembling the
printed circuit Interface Board yourself, but we envisage very little soldering for the
experiments. Other hardware involved should be relatively inexpensive parts, which
can be purchased from your local electronics store.

Itis hoped that a kit of integrated circuit chips and other components will be made
available with the Interface Board to be used with this book. You may have many of
the chips we recommend lying around your workbench at the present time. We would
like to emphasize that only LS chips should be used with these experiments as use of
the regular 7400 series of TTL chips will lead to too much drain on the Timex/Sinclair
power supply and loss of quality in the video picture.

If you intend to wire wrap any of your circuits for a permanent applicationthen you

will need to purchase a wire wrap tool, wire wrap wire, and wire wrap sockets and
connectors for your circuit,

BREADBOARDING

The layout of a typical solderless breadboard has already been discussed in this
chapter. The experiments using the FDZ X1 Interface Board with the microcomputer
can be performed easily by following the guidelines below.

Gather all the necessary components and integrated circuit chips as listed under
Components and as noted from the Schematic for the experiment. Next insert your
integrated circuit chips into the socket board adjacent and as close as possible to the
cables from the Interface board. The orientation of the chips should be with pin 1
nearest the left front corner of the breadboard. If you have your chip oriented in the
correct fashion then the identification key (notch or dimple in the plastic) will be on
the left side of the chip—otherwise the chip is turned around. Pin 1 is invariably
marked with a dot or notch on the integrated circuit chip. In this orientation, for a 14-
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pin chip: pin1 is in the lower left; pin7, thelower right; pin8, top right; and pin 14, .top
left corner of the chip. The +5-V power jumper from the socket board power rail to
-V cable pin should be disconnected. _

theFth, connecti;i} GND pins of your integrated circuit chips to the 0-V rail, then all
the V{cc) pins (+3 V) to the 5-V rail of your socket board. Now, corn.pf.ete the rest of
wiring of the circuit schematic. Itis good practice to have the schelmatxc in front of you
at all times while wiring the circuit. Most often, the wires will jumper .bet“.zeen the
vertical series of four holes at each of the pins of the integrated circuit chip‘s. The
schematics have all connections to the integrated circuit chips numbered with t'he
appropriate pin number of the chip. An added tip would be-to C{.}if)f‘COCfB your wire
connections and tick off each wire connected on the schematic asitis inserted into the
socket board. All interfacing signals can be jumpered in a similar manner from the
, socket pins on the breadboard. ‘
Caiﬁfly resistoi:*s or other components should be inserted into the sock’et board in as
nearly a similar position as indicated in the schematic. For example, don’tputa reszst;}:r
used in the input circuitry (left end of your schematic) in the socket'board I?eart e
right end of your circuit; this sort of wiring leads to considerablficrossmg of wires and
the construction of what is loosely referred to as a “birds nest”! '

Your schematic indicates wires that join and wires that cross without an.elt.ectrlcal
connection as shown in Figure 2.17aand 2.17 b respectively. Once you are satisfied that
all connections have been made, check your circuit connections, working fror.n one
end of the socket board towards the other. By color coding and cutting your wires to
length, neat circuit wiring can be accomplished on the socket boa.rd, wiuqh g?eatly
enhances your understanding of the circuit layout and assists you in fault finding. It
also reduces the amount of radio frequency interference, which can degrade your

i is significantly. .

Vldﬁ?)tgligﬁythf solderie}sfs breadboard allows for up to four individual electrical
connections to any pin of an integrated circuit on the socket board. Thisis usually more
than sufficient. .

We hope that you will not be intimidated by the apparent complexity ?f tl.ae
electronic circuits used in the experiments and will be able to construct the circuits
easily when you follow the above guidelines, carefully and logically.

CONNECTIONS CROSS OVER
END CROSS NO CONNECTION

Figure 2.17 Wire Connections and Crossings.
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Once you have successfully wired a few interface experiments, beginning with the
short simple ones in Chapter 2, then the larger circuits in Chapters 5 and 8 can be
constructed with confidence. Good luck, and always remember that you, not the
microcomputer, are the master.

CAUTION. Only plug or unplug your interface board
with the computer switched off.

It is always good practice if you ever wish to connect or disconnect the FDZX1
Interface Board from yowr Timex/Sinclair microcomputer to switch off the whole
unit while carrying out such an operation. This prevents the possibility of damage to
your microcomputer or Interface Board from transient voltage pulses generated
whenever circuit connections are made or broken.

EXPERIMENT 2.1

TRUTH TABLES OF COMMON INTEGRATED CIRCUIT CHIPS

COMPONENTS 1 * 741800 quad two-input NAND gate
17741502 guad two-input NOR gate
17 741508 quad two-input AND gate
1 740832 quad two-input OR gate
2 * Jumper leads or logic switches
2 * 3.3-Kohm resistors
1* LED and 470-ohm resistor or lamp monitor

DISCUSSION  As explained in this chapter knowledge of the truth tables of certain integrated
digital logic chips assists greatly in understanding how logic circuits function. To determine the
truth tables of the chips use will be made of logic switches and a lamp monitor. To keep costs
down jumper wires can be used as the 0-V or 5-V logic switches and an LEG in series with a 470-
chm resistor can be used as the lamp monitor.

PROCEDURE

STEP 1 With the computer unplugged, mount the interface Board to the computer, Position
the breadboard socket on the computer case betwesn the keyboard and the Interface Board, and
insert the cable sockets from the Interface Board at the right end of the breadboard.

STEP 2 tamp Monitors and Logic Switches will be usad throughout many of the experi-
ments in this book. You may wish to refer to Steps 1 and 2 in Experiments 4.4 and 4.5 jor a de-
scription of assembling sets of eight of each. Alternatively, small printed circuit boards are com-
mercially available which plug into the breadboard and thereby save room on the breadboard,
Further references to famp monitors will mean LEDs with current-fimiting 470-ohm resistors,
and references to logic switches will mean the equivalent of power rail jumpers.

STEP 3 Wire up one of the gate chips to the +5-V and 0-V lines on your socket board (with
the power off). These four chips all have +5 V going to pin 14 and 0 V going to pin 7. if you mount

Digital Electronics 31
10 1 O 1 [ O 1 14 Voo
2[:@ ] C@ 1 E@ ] C@ 113
sa (b 4=l Gp (6 &V Ol
4 [ 1 [ 1 O 1 O 1 11
80 S B\ oh 60 56 ) S
6 @3 O g: O @3 O @3 9
GND7 [ 1 ] 1 [ 0 O ] 8
00 '02 08 32
=5 ——
+5V EF _} {" 470
| P ; i +5V{
[ S H
| |GND i LED ;
L V33K | L__ SGND
+ 8V
I

Figure 218 Experiment 2.1 Schematic.

your chips on your board so that pin 1 is in the lower ieft corner, then pin 14 s the top left corner of
the chip. Pin 1 will have an indentation nearby to indicate that it is pin 1. Pin 7 then is on the lower
right corner of the chip.

STEF 4 Oncethe IC is connectad to the power rafls, plug in the computer and jumper the
+5-V and 0-V raits to the power pins on the left cable socket. Next, using jumpers to the power
rails {or using a set of logic switches), connect the gate inputs on the chip (four gates in each)
according tothe table in Step 5. Do notleave any of the inputs or outputs 1o a gate disconnected. If
you want 0V onaninput, then jumper that input down to 0-V rail. If you want + 5 V onan input, then
jumper 1t up to the +5-V rail. In this way you do not leave the inputs to float to a potential of their
own choosing, making your truth tabies look wrong.

STEF 5 Complete the truth table for each {C using the famp monitors to display the gate
outputs:
e e QUTPUTS — e ——

‘08 00 ‘32 02
INPUT A INPUT  AND NAND OR NOR

Gate 1 0 0
Gate 2 0 1
Gate 3 1 0
Gate 4 1 H

Note that the pin-out of the 744,502 differs from the other three ICs. You can wire the 741800 and
then substitute the 74L508 and 741.532 directly, but not the 741.502.
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EXPERIMENT 2.2

TRUTH TABLE OF 74L520 FOUR-INPUT NAND GATE

COMPONENTS 1 * 741820 dual four-input NAND gate
4 * Logic switches
4 * 3.3-Kohm resistors
1™ Lamp monitor

DISCUSSION  Digital logic gates are not limited to just two inputs as will be shown in this
experiment, It is possible to have a number of inputs to any gate but the most common numbers
are two, three, four, and eight. It will also be instructive in this experiment to determine what
happens to a gate input that is laft disconnected.

PROCEDURE

STEP 1 With thg power jumper from the +5-V cabie pin disconnected from the power rail,
remove alt other chips irom your socket board, and connect your 74L820 according to the
schematic shown in Figure 2.19.

‘ STEP 2 Verify that the truth table for the four-input NAND gate is as below, by jumpering the
inputs in sequence to 1s and 0s.

INPUT D INPUT © INPUT B INPUT A QUTPUT

DO OO O 0O
i SR oo I v i o i

0
¢
1
1
G
G
1

O - D - O = O
b b ek ok b L L

H 1 0 1
1 H 1 1 ¢

STEP 3 Now remove the four jumper leads connected to the inputs sc that each input is
allowed to float to its own potential. What cutput logic state do you observe? You should have
observed that the cutput state was a logic 0. What does that indicate about the logic states ofthe
inputs that have been left unconnected? It indicates that when the inputs to the chips are left
disconnected they float high; that is, they take up the Voo potential of +5 V.

The general rule for the TTL integrated circuit chips is that unconnected inputs float high and
assume a logic 1 siate,

FURTHER DISCUSSION It is as well to note that the 74LS00 series of chips can be icined
together in serles with the output of one chip driving the input or inputs of succeeding chips. When
such connections are used, it is impartant for the experimenter to be aware that the electronics of
the devices (chips) have current imitations. The maximum & 74L300 chip output can drive is five
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Figure 2.19  Experiment 2.2 Schematic.

regular TTL (7400) inputs or 20 inputs of 74L800 series chips. This ability to drive other chips is
referred to as the fan out. The typical maximum cusrent drive #imits are:

7400 FAMILY: REGULAR LS
inputs —18mA —04mA
Cutpuis 16 mA 8 mA
Fan out* 10 20

*within family

Because LS chips use less current than regular TTL chips, we have used them almost
exclusively in these experiments with the Timex/Sinclair interface so that the power pack is not
overioaded,

Should you wish to use TTL chips in any of the experiments you must be aware of the extra
current loading on the Timex/Sinctair power pack and the fact that mixing LS and TTl.chips can
lead to fan out problems {that is, insufficient current drive available for one chip to drive two or

more inputs of succeeding chips).

EXPERIMENT 2.3
DEBOUNCED PULSER

COMPONENTS 1 * 74L500 quad two-input NAND gate
1* SPDT (single pole double throw} swiich
2 " 1-Kohm resistor
1 * L.amp monitor

DISCUSSION We have seen that individual clock pulses can be generated electronically wét‘h
monostabie ICs. They can also be created manually with a switch. A problem is encountered in
digital electronics when switches are usedto activate clock inputs on integrated circuits suchas
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counters.»Experimenters often wonder why the count displayed by their digital counter rarely
agreeg with the number of times the switch was activated.

Th;s observation is very important because it highlights the fact that switches are machanical
devices and that their signals need to be conditicned so that digital circuits will respond correctly
10 a key closure. The problem arises due to the mechanical nature of a switeh that uses springsto
push the stationary and moving contacts of a switch mechanism into contact, The contacis tend
o boqnce apart when the lever of the switch is thrown from cne position to the other. This
bou_ncmg of the contacts causes vollage pulses, the pulses being directly reiated to the number
of times the contacts bounce together. So even if you anly move the lever of the switch once
many pu’!ses are produced in a short time, at ieast for several milliseconds. ’

A digital counter connected to such a switch will count each and every individual pulse
proquced by the bouncing contacts and display a count thatis anything but refated to the number
of times the switch lever was moved. To overcome this problem the switch (or any mechanical
key closure) has to be "debounced.” One methad is to use an R-§ {Reset-Set) latch circuit
mgde frpm two NAND gates. Another method, often used with microcomputer keyboards, is to
write a tima delay inte software to wail for the bouncing process to terminate. This expefimeﬁt will
demonstrate how you can construct a hardware debouncer circuit.

By referring to the schematic of the axperiment, Figure 2.20, it can be seen that the output of
each of the pair of gates is returned to one of the inputs of the other gate. The swiich is conneciad
ACTOSS the wo remaining inputs, pins 1 and 5. If we assume that the situation is as shown in the
schematic we can use our knowledge of the two-input NAND gate to determine the states of the
outputs Q and Q*.

Beoausg the switch is touching contact A, then input 1 of G2 will have g 0 appliedtoitsinput if

any pf the inputs of a NAND gate are 0, the output must be a logic 1 state. This logic 1 state is
applied to pin 4 of gate G2 at the same time a logic 1 is being applied to pin & from the 1-Kohm
ptuii-up resistor. Thus the output of G2 is a logic 0 showing that Q and Q* are truly opposie digital
states.
‘ Now if the switch is moved aver to contact B and momentarily touches the contact, then the
input to gate G2 on pin  will be a logic 0. Therefore, the cutput of G2 is put intc a high or logic 1
state. This iogic 1 state is passed back to the input on pin 2 of G1, which together with the logic 1
siate on pin 1 from the pull-up resistor causes the output of G1 to go low o a legic O state, the
reverse of the originat situation.

Now, should the switch bounce off contact B and put a logic 1 on pin 5 again there will be no
furiher change inthe output of G2 because the other input, pin 4, is at a logic 0 state and we only
require cne input to be a logic 0 state for the output to be a logic 1.

1K
+ 5V A0
A
GND B
1K
+ 5V ——IAAA—s

Figure 2.20  Experiment 2.3 Schematic.
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S0 na matter how many times the switch (or key} bounces onthe contacts only one change of
state will occur at the outputs, thatis, only one pulse is produced each time the switchis activated.
This is exactly the situation we require in digital electronics to perfect a digital counter.

PRCCEDURE

STEP 7 Wire the circuit as shown allowing reasonable lengths of lead tothe switch sc that it
can be operated easlily.

STEP 2 Using the Lamp Monitor, probe the pins of the 741800 to check the operation of the
latch circuit and complete the following table:

SWITCH POSITION PIN 1 PIN 5  PINS 2 AND 8 PING 3 AND 4

up
Mid-position
DOWN
Mid-position
up

This table shauld verify the description given in the discussion, Obtaining the mid-position of your
switch may be a little tricky depending on the nature of the switch.

STEP 3 Leave this circuit wired on the breadboarding socket for the next experiments.

EXPERIMENT 2.4
DIGITAL. COUNTER CIRCUITS

COMPONENTS 1~ 74L89C decade counter
1 * 74L893 binary counter
5* Lamp monitors
1 * Debounced switch or pulser

DISCUSSION  The ability to count pulses or events is a very useful feature of ail digital circuits.
There is, however, a nesd o display the count from a digital ciroull, and this is readily
accomplished using elther Lamp Monitors or numeral displays. The HP 5802 hexadecimal latch
dispiay is the simplest to wire, but it is quite expensive. Seven-segment displays are common but
require decoder/driver chips, such as the 741847, to converl the four-bit number code to the
seven-segment display code.

The 741890 decade counter chip is an integrated circuit containing four flip-flops. The circuit
has the ability to count in binary-coded decimal (BCD} and will count to 9 before resetting to O and
gontinuing its count. The outputs of the four flip-flops are available atthepins 8,9, 11,and 12 and
are labated C. B, D, and A, respectively. To permit the chip to count in decimal, cutput Aatpin 12
rmust be wired to Input B at pin 1. Pulses from a debounced switch or pulser are input at pin 14,
input A. Other pins available onthe chip cause the counttoberesetto 0, R0at pins 2and 3, andto
be reset tc 9, RY at pins 6 and 7. Refer to truth tabie at end of Chapter 2.
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The 74L.883 binary counter chip is identical in pin-out to the 74L830 counter chip but its
outputs are arranged to count the full four-bit binary (i.e. hexadecimal 0 1o F). The 74L893 only
has the reset to 0 controls at pins 2 and 3 and not the Reset to 9 pins 6 and 7 have no internal
connections.

Using LEDs to display the output condition of the counter where a lit LED corresponds to the
logic 1 state and an unlit LED corresponds to the logic 0 state, the appearance of the LEDs will be
as follows:

LIGHT EMITTING  DIODES COUNT

= e b S DO O OO OO0
-k = ok DO DO = S DOOOD0
- (D D D ) D e D e (O D

TMOOWrwm-~-omo b i 20

PROCEDURE

STEP 1 Wire the circuit as shown in the schematic, Figure 2.21, (with the +5-V rail
disconnected!) together with the debouncer circuit from Experiment 2.3,

STEP 2 By activating your debounced switch you should cause your counter 1o advance by
cne count each time, If this does not happen, thoroughly check ali your wiring connections,

STEP 3 Eachtime you throw the switch you create a logic transition. We have seenthatthe
count increments on a negative edge {transition from +5 V o 0 V). Note the direction you move
your switch to obtain this iransition edge. Does this agree with the output of the debounced circuit
famp monitor?

STEP 4 Now disconnect pin 2 from G V and connect it to +5 V. You will note that your
counter has resette 0. If you replace pin 2 back to 0V and repeat the sequence with pin 7, you wiil
see the counter reset to 9. What are the logic states of the uncennected pins 3, R0{2), and 6,
R9{1)?

STEP 5 Now disconnect from the +5-V supply, remove the 74L.890 decima! counter, and
replace it with a 74L593 binary counter in exactly the same position. Reconnect the -+5-V power
rail, and repeat Steps 2 to 4 again. The count should now progress up to 15 or F on your display.
The reset 9 input should have no effect.
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Figure 2.21  Experiment 2.4 Schemalic.

STEP 6 Can you suggest a circult modification to convert the 'L393 to a decimal counter?
First note that you have two free NAND gates on the 74L.500. i you gaie outpuis Band D of the
'1.593 through the first NAND gate and invert this NAND gate output with the second NAND gate
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Figure 222 AND from NAND invert,
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and then connect this output to RO(1} at pin 2 of the 'LS93, what happens? Why? Your circuit
should look like the circuit shown in Figure 2.22.

STEP 7 By selecting any two outputs of the counter and ANDing (NAND and Invert) them to
RO, you can make the following modulus counters: 2 (with outputs A and B), 5(Aand C), (B and
Cr9(Aand D) 16 (B and D}, and 12 {C and D).

STEF 8 You can verify the excessive bounce of a mechanical switch by substituting the
undebounced switch. Leave the common lead of the switch connected to the 0-V rail and, after
removing the jumper from pin 14 of the counter, insert one of the other switch leads inta pin 14,
There is no way 1o predict the number of bounces. If it exceeds 16 you could not know with the
present circuit. Can you suggest a way to find out ¥ the number is ess than 160(16 ~ 10) with the
components on hand? How about cascading the D output of the 'LS90 to the A input of the 'LS837
You will need eight lamp monitors.

STEP 8 Save your circuil for the next experiment.

EXPERIMENT 2.5
GATING A COUNTER

COMPONENTS 1 * 74L.S93 4-bit Binary Counter
1% 741800 Quad Two-Input NANDG Gate
1" 558 Dual 555-type Timer
4" Lamp Monitors
1" Pebounced switch or pulser
27 0.61 uF Capacitors
27010 uF Capacitors
2 * 5.1-Kohm Resistors
1 *each 2.2-, 3.3-, 7.5-Kohm Resistors
2 " 10-Kohm Resistors

DISCUSSION  In this experiment we will show how a gate can be used to stop and start a
counter. The use of such a system can be extended by using pulses of controlled length froma
monosiable applied to the gate to turn the counter on and off. in this way very high frequency
clock signals can be counted by the counter.

The schematic for this experiment, Figure 2.23, explains the action of the circuit. The
controlling gate is an AND gate (NAND and Invert) whose truth table should be reviewed during
this explanation. To one inpu! of the AND gate is connected the incoming square wave clock
frequency that is 1o be counted, to the other input is connected the monostable pulse. As you
remember, both inputs of the AND gate must be high (in a Jogic 1 state) before the cutput goes
high. The pulses from the clock are alternately high and low and while the monostabie pulse is
Kept in the low state (logic 0) the output {pin 8) of the AND gate wiil remain low, so in effect no
pulses from the clock will pass through to the counter.

When the monostable pulse goes intc the logic 1 state, the AND gate output will go high every
time the clock input goes high thus passing the clock puise through to the counter. By connacting
a puise of known time length on to AND input pin 12, the gale can be opened for a set periodand
the number of clock pulses counted for that time interval. in this manner, a digital counter can be
made tc operate as a frequency meter,
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Figure 2.23 Experiment 2.5 Schematic,

The Manostable and the square wave frequency generator (astable multivibrator) will be built
from the two 555 timers on the 556 |C. The pulse length for the monostable will be approximately
10 milliseconds with R(z) = 10 Kohm and C = 0.1 microfarad. The frequency of the astabie will
be approximately 1000 Hz when R(a) and R(b) ars & Kohm and € = 0.1 microfarag.

PROCEDURE

STEP 1 Remove the +5-V jumper from the cable socket and abter the circuit from
Experiment 2.4 as shown inthe schematic, Figure 2.23. Do notforget to connect +5V and 0 Vio
the 556 chip.

STEP 2. Apply power fo the circuit. The monostable trigger is active on the negative edge of
the signal from the debounced switch. Setthe switchinthelogic 1 state, Each time you trigger the
monostable, you will have to reset the switch.

STEP 3 Check whether the astable is cpearating. You can do this by temporarily jumpering
the output of the astable to the input A of the counter. Be sure to first disconnect the cther lead to
the counter input. if the astable is running, all lamp monitors should appear to be on. Due to the
rapid counting rate, our eyes are unable to distinguish individual flashes of the LEDs, so they
appear 10 be lit continuously.

STEP 4 Now replace the output of the astable to the gate input of the 'L800 and the inputto
the counter to the output of the second (inverting) NAND gate. Lift the lead from pin 2 of the
counter out of the 0-V rail to reset the counter to G and then replace it,

STEP & Trigger the monostable, and observe the count on the lamp monitors. It should be
about 10. Without resetiing the counter o 0, repeat and record the count about ten times. We
obtained the following sequence of counts G, 11,6, 1,12, 7,2, 13, 9, 4.

STEP 6 Calculate the difference between successive pairs of your counts. Remember that
when the second number is smaller than the first to add 16 to the second number before taking
the difference. Qur resulis were: 11,11, 11,11, 11,11, 11,12 11, Can you explain why one of our
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counts was 127 Remember that we are actually counting negative edges, and the sample taken
during the monostable enabling of the gate could occur just before the first negative edge.

STEP 7 You can change the frequency of the astable by changing the R(b) resistor value,
We got the following counts (in pareniheses) for the following resistances: 10K (6 or 7}, 7.5 K (8 or
9, 5.1 K (mostly 11}, 3.3 K (14 only}, 2.2 K (2 only—this really had to be 18). The corresponding
frequencies are (assuming the monostable was 10 msec): 6500, 8500, 1100, 1400, 1800 Hz,
respectively, Of course, the uncartainty is at least 10%.

STEP & if we had cascaded the 'LS90 1o the 'LS93 as suggested in the last expariment our
result for the 2.2 K value of R(b) in Step 7 wouldn't have to be a guess.

SUMMARY  Many examples of just how useful gates can be in controlling events will be
given later onin this book. This has been a simple experiment to illustrate the principle of a gate.

EXPERIMENT 2.6
DECODING

COMPGONENTS 1 * 7408138 three-to-gight line decoder
6 * Logic switches
8 * Lamp monitors

DISCUSSION  Decading is the means by which microcomputers can send information 1o
specific devices, Several bus lines of the microcomputer (cailed the Address Bus! are used to
output a binary number (called the Port Address or Device Code). This number is like the output of
a counter and has 1o be converted into a single enahling clock pulse for the device whose code
corresponds 10 that number. Decoder integrated circuits like the 7418154 described inthe text or
the 7415138 used in this experiment are used to generate unique clock pulses from the address
bus.

To see how a decoder functions we will work through an experiment to demonstrate how the
device numbers are produced at the eight cutputs of the decoder frem the various digital codes
applied to the inputs of the decoder, The digital codes applied to the inputs are representative of
the address information put out by the microprocessor. Each of the eight output lines could then
be used to enable one of eight devices.

PROCEDURE

STEP 1 Whre the circult according to the schematic, Figure 2.24. If you do not have a set of
logic switches, use jumper leads to -+5 V and 0 V for the digital inputs. The logic state of the
outputs will be displayed by the LEDs: logic 1 when on, logic G when off.

STEP 2 Apply power anc with the three inputs A, B, and C setto logic 0, adjust the three gate
switches to obtain a logic O (lamp off) state for channe! 0 (pin 15). What are the settings on the
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Figure 2.24 Experiment 2.6 Schemalic.

gate switches? Gt should be fogic 1, and G2A* and G2B* should be logic 0. Any other
combination of the gate switches should have all lamps on.

STEP 3 Now compiete the foliowing truth tabie for all the combinations of digital input code.

C B8 A

INPUTS e Y QUTPUTS e e
01 2 3 4 5 6 7

0 0 ¢C o1 1+ 1 1 1 1 1

g 0 1

0o 1t ¢

o 1t 1

1 0 C

10 H

t 1 ¢

o1

STEP 4 Could you say with certainty that for each combination of digital input code there
was only one output line activaled? Your answer should be yes, Are the outputs active high or
active low?

STEP 5 i the digial inputs were connected 1o address lines A5, A4, and A3, completa the
following table, using the binary weights of the lines, which shows the various decimal numbers
required to activate a particutar output line when AQ and A1 are always atiogic 1 and A2 is atways
at logic C.
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ADDRESS LINE INPUTS OUTPUT LINE 7405138

Waight: 32 16 8 4 2
A5 A4 A3 AZ AT A

¢ 0 G 1
0 G 1

01 2 3 456867
3
11

19

DO OO OO0O
kb b ke
B O e R Y

We will use this table in Chapter 4.

STEF 6 You should, by stugying the previous table, be able to deduce {at least, partly) how '

the 741.5138 decoder chip on the buffered Interface Board produces the unique device select
codes as shown on your ribbon cable cannectors,

O3 O

microcomputer
fundamentals

A microcomputer consists of four major components and the support logic circuitry
needed to coordinate them. The four componentsinclude (1) a microprocessor, (2} a
certain amount of memory registers ranging typically between 9 KB and 64 KB (1
KB = 1024 eight-bit registers), (3) an input device, which is usvally a keyboard, and (4)
an output device, which is typically a video monitor or television set.

A microprocessor is a very large scale integrated { VLSI) digital circuit consisting of
an arithmetic logic unit (ALU), several registers, and the subsidiary decoding, timing,
and control circuitry. Most microprocessors are 40-pin DIP ICs. There are several
different microprocessors in use currently, some of which differ significantly from the
others in the way they operate. There is one group, however, that functions sirilarly, is
known as the 80 family, and consists of the following microprocessors: 8080, 8085, Z80,
and NSC800. To say that the 80 family microprocessors function similarly does not
mean that they are identical but that they have comparable internal registers and have
a large portion of their instruction set in common. Thus the Z80 microprocessor has an
extensive instruction set consisting of 698 distinct operations. The 8080 has 244
operation codes, all of which are included in the Z80’s set. We shall refer to these as the
8080 subset when we discuss machine language programming in a later section.

THE MICROCOMPUTER BUSES

All microprocessors can be schematically represented as consisting of three sets of
connections exclusive of the power supply connections. Fach set is a number of
parallel wires {or lines) ealled a bus. The three buses are known as the Data Bus, the
Address Bus, and the Control Bus. In its simplest definition, a bus is a common signal
pathway. This means that each bus line serves to carry information (digital signals)
between the microprocessor and all other components of the microcomputer. Figure
3.1 illustrates the components of a microcomputer and the connections of the three
buses. Notice in Figure 3.1 that the Data Bus is drawn with arrow heads pointing in
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Figure 3.1 Components of a Microcomputer,

both directions. This emphasizes the fact that the Data Bus is bidirectional; data can be
transmitted either from the microprocessor to one of the other components or vice
versa. The Address Bus is unidirectional and transfers information from the
microprocessor to the other components. Also note that the Control Busis represented
as five individual lines having two pairs going out from the microprocessor and one
bus line coming into the microprocessor. This is highly symbolic because there are
more than just five control lines on the Control Bus. It is drawn thus to emphasize on
the one hand the greater individuality of the Control Bus lines while serving, on the
other hand, as a reminder that while some of the control lines transfer signals out from
the microprocessor, there are some that transfer signals into the microprocessor. For
all the various types of microprocessors referred to previously (including those of the
80 family), it is the Control Bus lines that show the greatest variation among
MiCroprocessors.

All so-called eight-bit microprocessors have an eight parallel line Data Bus and are
thus capable of transferring eight bits of data simultaneously. These lines are labeled
D0, D1, . . ., D7 Note that this means that the transmission of a data byte (eight bits)
makes possible 256 different “words” or codes. The Address Bus for the eight-bit
microcomputers consists of 18 parallel address lines providing for the simultaneous
transmission of 186 bits of information representing 65,536 (256 X 2568} codes. We shall
see that in certain instances it is convenient to consider the Address Bus in two parts,
each of which forms one byte and which we will denote as the Low Address Bus (with
the eight lines Iabeled AQ through A7) and the High Address Bus (the lines labeled A8
through A15),

For a given operation of the microprocessor each of the buses serves to provide
information that answers one of the questions What?, Where?, When?, and How? the
action of the microprocessor’s operation is to take place. The Data Bus carries what
information is to be transferred (either to or from the microprocessor). The Address
Bus carries the information of where the data byte is to be transferred, that is, to or
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from which address. One of the Control Bus lines will signal when the data byte is to
be transferred and, depending on which one of the control lines was active,
determines how the transfer is to take place.

Because our interest is in interfacing the Timex/Sinclair models, we shall concern
ourselves only with the buses available to us. These lines are physically located at the
right rear of these computers and are available as pads, or small tin-plated strips, on the
computer’s printed circuit (PC) board. The pads are arranged in parallel rows of 23 (28
for the Spectrum and 32 for the TS2068) on either side of the PC board. One pair of the
pads has been cut out to form 4 keyway slot in the board. This slot serves asa keyway
guide to prevent misalignment when a PC edge connector is inserted on the board.
Figure 3.2 shows the positions of the pads and the signals assigned to each pad as
viewed from the rear of the computer. Pad 1 is to theleft side as you face the keyboard
of the computer. Although the pad numbers differ on the three versions, the relative
positions of all the signals with respect to the keyway slot are the same on the B&W
models and the TS2000. Ouly the signals that are ditferent from the TS2000 are labeled
on the other two versions. Pads denoted with a dash have no defined signal. The boxes
shown on the TS2000 connector are the signals actually used in the Interface Buffer
circuit described in Chapter 4. Note that these signals are all identical and that all
experiments are possible on any of the five Sinclair and Timex models. The block
labeled Interface corresponds to the connection referred to in Figure 3.1.

The easiest of the signals to identify at the interface connector are the eight data bus
lines, D7-D0, and the 16 address bus lines, Al5-A0. There are four power
connections, two of which are labeled 0 V (electrical ground), a third is the
unregulated DC supply voltage labeled +9 V, and the fourth is the regulated system
supply voltage of +5 V. The remaining 16 (or more) lines make up the Control Bus of
the Timex/Sinclair models. We shall have more to say about these signals after we take
a closer look at the Z80 microprocessor which is used in the Timex/Sinclair computer.
But we should draw attention to four of the control lines that are particularly important
to our ensuing discussion.

These four are all output control lines, meaning they originate at the microprocessor
and are transmitted to the other components of the microcomputer. Their abbrevia-
tions and labels are:

1 MREQ®, Memory Request;

2 10RQ*, Input/Output Request;
3 RD®, Read;

4 WR®, Write.

As control signals, we note first of all that all four are active low. We shall use the
asterisk to indicate Control signals whose inactive, or quiescent, state is a logic 1 (-+5
V) and whose active state is a logic 0 {0 V}. The first two distinguish between the two
types of data transfer unique to the 80 family microprocessors. Whereas all
microprocessors must be able to request data transfer with the memory registers, the
80 family microprocessors have the additional capability to use the Low Address Bus
to request data transfer with an additional 256 input devices and 256 output devices.
This is not to imply that microprocessors other than the 80 family members cannot
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transfer data to input and output devices, it means that they must make those devices
appear to be memory locations and use the full 18-bit Address Bus for addressing
them.

The remaining two control lines, RD® and WR®, determine the direction in which
the transfer is to take place. Because the reference point for transfer is always the
microprocessor, the Read control is used when data is to be read, or input, into the
microprocessor. Similarly, the Write control is used when data is to be written, or
output, from the microprocessor. It should be apparent that two of these control
signals (pulses) must occur simultaneously in order to determine the how of the
operation. In fact, from the interfacer’s point of view, it is more convenient to combine
them using some simple logic gates into the four alternate control signals:

1 MR®, Memory Read;
2 Mw*, Memory Write;
3 IN®, Device Input;

4 OUT*, Device Output.

Each of these now uniquely provide both the type of transfer {memory or I/0 device)
and the direction of the transfer. This combination can be made very simply with the
use of one integrated circuit. Because we wish our new control lines to be active low,
we recall from the discussion on gates in Chapter 2 that the unique output of the OR
gate is low only when both mputs are low. The 741832 IC consists of 4 two-input OR
gates and very nicely satisfies our requirements. The corresponding logic is illustrated

in Figure 3.3. We shall return to this concept more fully in our discussion of Device
Select Pulses in Chapter 4.

MICROPROCESSOR ARCHITECTURE

We now turn our attention to the logic structure, or so-called architecture, of the Z80
microprocessor. Figure 3.4 illustrates this architecture and we shall have occasion to
refer to it periodically as we proceed. The description of the architecture of a

IN*
IORQ*
WR*
-3
MREQ*
) MW *

Figure 3.3 Controd Logic.
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Figure 3.4 Z80 Architecture.

microprocessor amounts to a description not of the network of electronic circuits
within the integrated circuit but of the number and kinds of internal registers used to
store and manipulate the information stored in them. Examination of Figure 3.4 shows
a set of various short and long boxes representing one-byte (eight-bit) or two-byte (16-
bit} registers, respectively. The figure also illustrates how the registers relate to the
Data and Address Buses. The Control Bus, on the other hand, does not tiein directly to
these registers but originates from other support circuitry within the microprocessor.
We see that in addition to the four control lines already discussed, two additional
control lines labeled Reset and ¢ (Phi) have been included to aid in our discussion.

Each register is an internal memory register. There are additional internal registers
in the microprocessor but they are used by the microprocessor for iternal
manipulation and cannot be accessed or manipulated through programming. All of
the registers shown in Figure 3.4 can be manipulated with programming instructions.
There are two sets of six general purpose registers, which serve as storage registers of
program variables although only one set is accessible at any one time. With certain
instructions, the general-purpose registers can function in the pairs BC, DE, and HL as
16-bit registers with the first-mentioned register of each pair serving as the more
significant byte. Of particular importance, the HL register pair can be used as an
address to index {point to) any memory register in external memory. The IX and IY
registers are also index registers similar to the HL pair but more versatile. They
become useful in programming techniques more advanced than are necessary for our
purposes. The Refresh and Interrupt registers are special-purpose registers whose use
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is beyond our needs. We now focus our attention on the remaining special-purpose
registers, which are of considerable importance in understanding how microproces-
sors work.

The A register is most commonly referred to as the Accumulator for the very good
reason that it is the only register in which arithmetic and logical operations can be
carried out with the general-purpose registers by the microprocessor. The results of
these operations are saved {accumulated) in this register. The only “true” arithmetic
that the microprocessor can do, besides counting, is addition and subtraction between
one of the general-purpose registers and the Accumulator. You might recall, however,
that multiplication and division really only amount to counted additions and
subtractions, respectively. The logical operations that the microprocessor performs
are all done bit-by-bit and consist of negation of A (that is, bitwise inversion, also
called complement, where each logic | is converted to a logic 0 and vice versa); and
ANDing, ORing, and Exclusive ORing between A and cne of the general-purpose
registers, just as was described with two-input logic gates in Chapter 2. Asindicated in
Figure 3.4, most of the transfers of programmed data in and out of the microprocessor
use the Accumulator as the destination or source register.

The F, or Flags, Register is closely connected with what happens in the
Accumulator. Although it is an eight-bit register, only six of the eight bits are active, the
other two are dummies. The six active bits are used to signify (signal) certain
information about the data byte which resulted from the Iast (mnost previous) math
instruction (arithmetic or logic). The three most important flag bits will be described,
the remaining three (Negate, Parity/Overflow, and Half Carry) are of no use for our
purposes

F7, the most significant bit of the Flag register, is the sign flag: when the result of
the last math operation resulted in the most significant bit of the result beinginalogic 1
state then F7 = 1. Why this is referred to as the Sign Flag requires explanation. We all
understand that the sum of two numbers of opposite sign but equal magnitude {+X
and —X) equals zero. Therefore, we can define the negative of a number as that
number which yields zero when added to the number in question. Thus, X + (=X} =
X X =0, Now, we know that eight-bit numbers can be added, for example

1100100 1.

What eight-bit numbers can be added to vield a sum of zero? Consider the sum:

1 g00GC0CO0OO00 256
—256 Carry

0 Resuit.
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Notice a ninth bit {Carry) was generated. Obviously, if 00000001 = 1 then 11111111 =
—1! In fact, for the decimal range of eight-bit numbers from 0 to 255, we can consider 0
to 127 as positive numbers and 128 to 255 as negative numbers when it suits our
purpose. In binary notation, the positive numbers have D7 (the leftmost or most
significant bit of the eight-bit byte) = 0 while negative numbershave D7 = 1. There s
a simple trick for finding the negative of a binary number called the “two’s
complement of a number”: add | to the inverse (complement) of the number. For
example, the complement of 00000001 is 11111118; if we add 1 (00000001) to this result
we obtain —1 or 11111111, We shall have occasion to check the sign flag when we
program the Z80.

The second important flag is the ZERO Flag on bit F6, If the result of a math
operation was eight bits of Os, then the Zero Flag is set (raised? ) by becoming a logic 1.
Take care to note that if the Zero Flag is zero (F6 = 0), then the math result was not
zero!

We have already encountered the third important flag, which is the CARRY Flag on
bit ¥0. The Carry Flag serves as a ninth bit for all arithmetic operations (not logical
operations because they are done bit-by-bit). Actually, the Carry Flag or Carry bitalso
serves as a BORROW bit when a subtraction is performed. We have already seenan
example of the Carry as the ninth bit created in an addition when we added 1 to —1.
Let’s examine the Carry Flag when we subtract one byte from another. For example,

01100101 101 Minuend
— 01110010 - 114 Subtrahend
1 111146011 -13

+ 256 Carry

243 Hesult

But subtraction is just adding the negative of the subtrahend by taking its two’s
complement, then

0 01100101 101
-+ 1 108001110 142
1 111146011 243,

Notice that just as every positive number may have any number of leading zeros (to its
left}, every negative number must have that many leading ones.

Dealing in binary arithmetic takes some getting use to. Most personal computers are
programmed to translate bytes into decimal numbers when they are displayed to the
user. It inay make vou more comfortable alse to dealin decimal numbers. I you do,
then when it comes to knowing whether the Carry Flag is set to 1 {or cleared to0) from
either a carry-on addition, or a borrow-on subtraction, you have to see whether the
decimal result is greater than 255 or less than § (i.e., is negative}. Remember that 255 is
the largest value a byte can have. Whenever vou add two decimal bytes and the
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number is greater than 253, subtract 256 from the number and set the Carry Flag to 1.
Whenever you subtract two numbers and obtain a negative result, you rmust add 256 to
the result and set the Carry (borrow) Flag to 1. This has been illustrated to the right of
the binary arithmetic in the above examples.

Before describing the remaining three registers, we have to consider how the
microprocessor manages to run. The Control Line labeled & (Phi} carries a continuous
train of digital clock pulses (i.e., it is a square wave). Eachrising and falling edge of this
train is used electronically by the microprocessor to trigger the next appropriate event.
As a point of reference, the clock for the Z8S0A microprocessor can operate up to
frequencies of 4 MHz. (4 million pulses per second.) The frequency in the
Timex/Sinclair is actually 3.25 MHz. This means that each square wave is0.308 usec or
308 nanoseconds long.

The other control line we showed in Figure 3.4 was the Reset input line. When the
Reset control is made a logic 0 by momentarily grounding it witha pushbutten switch
or, as in the Timex/Sinclair, when the power is turned on to the computer, the 16-bit
Program Counter register is reset to zero.

The operation of a microcomputer starts by fetching a byte of machine code from
external memory at the memory address held in the Program Counter, The 16 bits of
the PC are placed on the Address Bus and the Control Lines MREQ? and RD*® are
activated (momentarily made logic 0). The addressed memory register is enabled
and puts the contents of its eight-bit register on the Data Bus. The MiCroprocessor
reads the byte on the Data Bus and latches it into the Instruction Register. The Program
Counter is incremented by the next appropriate ¢ (Phi) clock pulse so that it once
again is pointing to the next program byte in memory and the microprocessor
proceeds to electronically decode the instruction byte into the proper sequence of
actions appropriate to the instruction code.

It is convenient to group the train of clock pulses according to the action of the
microprocessor in executing an instruction. Each group is called a machine cycle, and,
in the Z80, the shortest is four clock pulses in duration. Depending on how
complicated the instruction is, several machine cycles may be required to execute the
instruction. The set of machine cycles is called the instruction cycle. Each unique
instruction is always the same number of machine cycles and, therefore, the same
number of clock cycles when it is executed. For example, if a particular instruction
takes 18 clock cycles to be completed, then you can calculate that it will always take
18 X t {where t is 308 nanoseconds on the Timex/ Sinclair} or5.54 usec to perform that
instruction.

The first machine cycle of each instruction cycle is always a Fetch operation in
which the instruction code is loaded from memory into the Instruction register. When
the microprocessor starts a new instruction it activates another Control line called M1
during the first machine cycle. We will have occasion to refer to the M1 Control signal
in Chapter 4.

There rernains only one register to complete our description of the architecture of
the Z80 microprocessor. It is the 16-bit Stack Pointer register. There are many
instances when the microprocessor needs more storage space than its internal registers
can hold at any given time. This problem is solved by using external rnemory to store
any number of bytes in a kind of scratch pad called the Stack. This storage area is
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appropriately called a stack because for however many bytes are stored on it, the
Stack Pointer always holds the address of the last entry only. In other words, the Stack
operates like a push-down list of numbers. The last-in entry must be the first-out. The
Stack starts at a higher memory address and as bytes are appended, they are placed at
consecutively lower addresses. As bytes are recalled from the Stack, the Stack Pointer
automatically increments. Each stack operation consists in loading ( PUSHing) or
removing (POPing) two data bytes. Thus, the Stack Pointer is always incremented or
decremented by two. The two bytes that are PUSHed or PCGPped may be either of the
register pairs: BC, DE, HL, IX, IY, or the Program Counter, PC. The more significant
byte (B, D, H, or Hi Address) is always stored first {at the higher stack Meory
address).

MACHINE AND ASSEMBLY LANGUAGE

We have already mentioned that the Z80 microprocessor has a set of 244 of its 698
instructions, which we referred to as the 8080 subset. Because each instruction must be
decoded by the Instruction register as one byte, and a byte can be any number
between 0 and 255, it is apparent that there can only be a maximum of 256 one-byte
instructions or operation codes (opcodes). If the 8080 subset uses 244 of these 256, then
there are 12 unused bytes in the 8080 subset. For the Z80 to have 698 instructions must
mean that most of the extra (Augmented ) Z80 instructions consist of more than one
byte. This is exactly the case. Four of the unused 12 opcodes are used as prefixes; that

is, when one of these four bytes is received by the Instruction Register, it signals the .

microprocessor to fetch the next memory byte and decode it as an Augmented Z80
opcode. The decimal values of the prefixes for the augmented Z80 opcodes are 203,
221,237, and 253. With these four of the 256 code values accounted for, we have only to
try to understand 252 others! Actually, we will not say much more about the
augmented Z80 instructions but confine most of our attention to the 8080 subset.

Because it is tedious to work with the opcodes as numbers, a set of abbreviations,
which serve as memory aids {mnemonics) for the machine language programmer, was
developed by the microprocessor manufacturer. These mnemonics describe each
type of operation performed. It is much easier to write a program in mnemonics and
then assemble it to the list of numbers that have to be entered into the computer
memory. The set of mnemonics is called the Assembler Language of the particular
IMHCTOPTOCessor.

Six charts, included in Appendix A, can be cut out and glued onto cards to form a
sliding chart for assembling machine code. We shall describe the Z80 machine
language with reference to these charts. You may want to put the chart together before
proceeding; however, that won’t be necessary for our discussion.

The entire instruction set can be grouped into seven classes of operations. These are:

8080 subset
8080 subset plus prefixes 221 and 253
8080 subset
8080 subset

1 Math (arithmetic and logic)
2 Register transfer
3 Stack reference
4 Program branch

i
|

i
|
|
|
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8080 subset

780 augmented set

280 augmented set {prefix 203)
Z80 augmented set (prefix 237)

Miscellaneous
Relative branch
Bit reference
Block reference

Q0 -1 I O

The first five classes are included in Chart A.1 in the Appendix. The Math ops are listed
in the three boxes in the upper half of the two righthand columns, and the Transfer ops
are listed in the three boxesin the lower right half. The second column from the leftare
the Stack reference ops grouped in four boxes while the top three boxes in the leftmost
column are the program branch ops. The Miscellaneous ops are listed in the box in the
fower left corner.

The remaining three classes are included in Chart A.4. The small box in the upper
left corner contains the relative branch ops and the two large boxes list the operations
for the Bit and Block reference ops.

To give you some idea of the actual organization and logic of the eight-bit
instruction codes, we have to refer to our earlier discussion of the octal number base.
We can quickly cover half of the 8080 subset of instructions with the register Transfer
operations and the Math operations.

A register transfer operation consists of loading the contents of one register (the
source) into another register (the destination). Recall that there are eight registers
available for these one-byte transfers, namely, A, B, C, D, E, (HL), H, and L., where
(HL) is any external memory register whose address is stored in the HL register pair at
the time. For convenience, we also refer to (HL) as register M. Because there are eight
registers, they can be individually coded with threebitsas: B=0,C=1,D=2,E =3,
H=4,L =5 M=86,and A =7. By dividing the eight bits of the instruction code into
three-bit octal groups (only two bits for the left group) as

X X X X X X X X
OpCode Destination  Souce
type register register

and defining the Op Code type as 01, we can see the logic of the machine language
operation codes. For example, the opcode for LD A,C (read as “load A from C”) will
be

0 1 111 001
or 171 {Octal) which, on conversion to a decimal value, is
(1 X 64) + (7 X 8) + (1 X 1) = 121,
Find this value on the Decimal Assembler. If you have put the Assembler together,
locate the expression “LD A,” in the lower right Transfer box on Chart A.1 and pull the
slide out until the C column lines up. You should now be able to read: LD A,C 121. If

vou are reading from the charts, read the C column on Chart A.2 on the tenth row up
from the bottom of the chart.
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All64 “LD register, register” opcodes are similarly encoded except LD MM which
is not encoded in this manner. Because it doesn’t do anything useful, the LD M M code,
166 in octal, is used for the HALT instruction. Verify its decimal value (1 X 64 + 6 X
8 4 6 X 1} by finding it in the lower right box of Chart A.1. We have now covered
about one-fourth of the 8080 subset.

We can cover another one-fourth by understanding how the octal-based machine
code for the 8 one-byte Math operations are encoded. Recall that these are all
performed with the Accumulator register and one of the other eight registers. Notice
that there are eight of these operations, so again they can be coded with a three-bit
octal digit. These are:

MNEMONIC  CODE OPERATION
ADD Ar 0 LETA=A+T
ADC A 1 LET A== A+r+ Carry
SUBr 2 LETA=A—r
SBC Ar 3 LET A=A —r-— Carry
AND 1 4 LET A == A AND r bitwise
XOR ¥ 5 LET A == A XOR r bitwise
CR 6 LET A=A OR r bitwise
CPr 7 LETA=AbutF=resuitof A—r

where ris any one of the eight registers. The Carry bit {flag) being added or subtracted
for codes 1 or 3 respectively in the list is treated as the least significant bit with seven
leading zeros. Thelogical operations of codes4 -6 are bit-by-bit operations just like we
deseribed in Chapter 2. The Compare operation, CP r, does not alter the A register’s
value but does set the flags in the F register according to the result of subtracting r from
A.

Because the Accurnulator register is always involved in the Math ops, the operation
code needs only to specify which Math op code and what other register is to be used.
The Octal partition is:

X X X X X X X X
Op code Math Register
type operation code

where the Op Type code for Math ops is 10. For example, the op code for ADC AE
{(read as "Add E with Carry to A”) would be

10 00t 011

or 213 (octal} and 139 (decimal).

There is similar order for the rest of the machine code but for codes beginning with
octal digits 0 and 3 are arranged somewhat differently. We leave the remainder of
octal decoding of the 8080 subset to the interested reader. The point of this discussion,
besides introducing over half of the machine code in the easiest way, is to illustrate just
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how the Instruction Register of the microprocessor can analyze the eight bits of an
instruction. By reading the first two bits (octal 1 or 2}, it can decide how tointerpret the
remaining six bits as register and/or Math op codes in two sets of three bits.

We now turn our attention to the other types of machine language instructions
available. You may have noticed that in addition to the eight columns for registers A, B,
C, D, E, M, H, and L, there are three other columns in the Transfer and Math columns
on Chart A.2 which are labeled N, X, and Y. The references to N {number) are called
immediate references where the number N is the byte immediately following the
instruction in the program listing. This second byte of the instruction is called an
operand and allows the constant N to be incorporated directly into the program.

Notice that it is a constant and not a variable. Once itis incorporated into the program,

it cannot be changed without changing the program. For example, suppose at some
point in your program (say at memory location MEM = 16540} you knew that register
A held some number from which you wanted to subtract the number 8. You would use
the instruction SUB N, <{8>>, and your program list would include:

ADDRESS LABEL MNEMONIC  CODE

16539 MEM -1 . :
16540 MEM SUB N 214
16541 MEM 41 <8> 8
16542 MEM—+2 :

These instructions are two-byte instructions where the first byte is the op code and the
second byte is the operand.

If you look over the other boxes on Chart A1 you will also find some instructions
which include a double N or NN reference. If you guessed that these are three-byte
instructions consisting of an op code followed by two operands, you were right. There
are two ways the NN reference is used. In the direct form, you can load any register
pair with a two-byte number. The register pairs that you can load immediately include
BC, DE, HL, as well as the Stack Pointer, SP, and the Index registers, IX and IY. Your
program list, again at some memory address, MEM, would read:

MEM—1 : :
MEM LD ML,NN 33
MEM-+1  <N{Lg)> 130
MEM+2  <N{Hi)> 64
MEM-+3 : :

where the first operand byte (130 in the example) is loaded into the low register (C, E,
1, etc.) and the second operand byte (the one at the higher memory address, the
number 64 in the example) is loaded into the high register. The second way that the
NN byte is referenced is in parentheses as, for example, LID A,(NN). This is the
indirect form. In this form, (NN} refers to the contents {one byte} at the memory
address NN. Whenever you encounter one or two Ns in the Assembler Language it
reminds you that the instructions have one- or two-byte operands which must be
included in the program list immediately following the opcode.
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We noted earlier that there are also Math and Transfer instructions, which refer to
columns labeled X and Y. These are just abbreviations for the Index registers IX and
IY. All of the instructions that reference the Index registers belong to the Z80
Augmented set and not the 8080 subset. This means that the opcode is preceded in the
program list with a prefix byte. You might recall that the IX and IY registers can
perform every operation that the HL register pair performs. If you examine these
instructions, you will note that they have the same opcode as the corresponding HL
instruction and that they differ only in having a prefix. The other difference between
HI. and the Index registers is that in indirect references, (HL) =M, (IX) = X, and
(IY) =Y, a relative displacement from the indexed memory address must be
specified. This is summarized in the third box in the second column on the right in
Chart A.l. On the slide table, Chart A2, the prefix is denoted by a p and the
displacement by a d. Thus, these are three-byte instructions of the form, for example,
for LD (IX+d),A:

MEM — 1 : :

MEM AX Prefix 221
MEM-+1 LD (HL)A 119
MEM-+2 Displacement —128to+127
MEM-+3 : :

Notfe that the displacement is given in two's complement notation as we discussed
earlier. Thus, not only can we reference the memory location pointed to by the IX or
1Y register, but any memory location spanned by the displacement value without
changing the value of the Index register. If you specifically wanted to reference the
address held in the Index register, you would have to give a displacement of zero.

The remaining Math ops include the 16-bit ADDs and both 8- and 16-bit increment
(add 1 to the current value) and Decrement {subtract 1) instructions. A particularly
useful set of Math instructions cover the Rotate operations. The 8080 subset includes
four of these, which operate on the Accumulator. The Z80 Augmented set has seven of
these Shift/ Rotate instructions, which can operate on any of the ten registers: A, B, C,
D,E,H I, M X, and Y. These augmented instructions use the prefix 203 and include
the four Rotate ops of the 8080 subset. Each of the seven types is most easily described
by the diagram in the upper right box on Chart A 4. The data bits of the register are
shifted one bit position to the right or left, with some of the instructions including a
ninth bit (the Carry flag) in the operation. Note the redundancy between the first four
in this box on the A column and the box on Chart A.1 without the prefix. The remaining
four Math ops include the decimal adjust accumulator (DAA}, complement the
acc.umuiator (CPL), set (to logic 1) the Carry flag (SCF), and complement (change its
logic state) the Carry flag (CCF). (Except for DAA, these are self-explanatory. The
DAA is a binary-coded decimal operation of little immediate interest.)

The Stack operations are all two-byte Transfer operations whose descriptions are
straightforward. The EX mnemonic stands for “Exchange” and corresponds to a swap
between the registers specified (direct or indirect). The PUSH and POP operations

were d;"scussed previously and are of significant use for saving and restoring values of
the registers with the Stack.
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The major branching instructions include Jumps (like GOTO in BASIC), Calls (like
GOSUB in BASIC), and Returns (just as in BASIC at the end of a subroutine). These
instructions are either unconditional (JP NN, CALL NN, RET) or conditional. The
decision for the conditional branches are made on the Flag register bits with two
choices (1 or 0 for the particular Flag bit). These are shown in the left tablein Chart A.2
and the corresponding box on Chart A.1. The two-byte operand for the Jumps and
Calls are the specific memory address (Lo address byte first, Hi address byte
second ). The RET are one-byte instructions because the return address of a Call is
automatically PUSHed onto the Stack when the Call is executed and automatically
POPped off the Stack when the Return instruction is executed.

The Restart instructions, RST X, are one-byte Call subroutine instructions having
fixed address destinations. These instructions automatically branch to High Address0
and Low Address 0X0 (Octal base!l) where X is the RST number 0 through 7. These
instructions are of little utility to the user of a Timex/Sinclair because their destinations
are in the ROM using dedicated subroutines.

We have already seen that the 8080 subset consists of 244 opcodes and that of the 12
unused codes (out of the 256 possible ones), the Z80 Augmented set used four for
prefixes. The remaining eight are also used in the Z80 Augmented set but without
prefixes. These are shown in the upper left corner of Chart A 4. Six of the eight are
branch instructions having a very important distinction from those just described in
the 8080 subset. These six branch opcodes are relative jumps. Whereas it was necessary
to given an absolute {two-byte, NN} memory address for the destination of the 8080
jump opcodes, JP; the relative jumps, JR, use a one-byte displacement operand from
the current value of the Program Counter. Because the Program Counter will point to
the next opcode in the program after it has fetched the operand byte from memory,
that memory address becomes the reference or zero point for the relative jump. We
have seen that a one-byte number can, when convenient, be treated as a positive or
negative number. In calculating the displacement this technique is used for the relative
jumaps. For example, a jump of ten locations forward in the program is +10 while a
jumnp of ten locations backward will be 256 — 10 = 246. Therefore, from the PC
reference point, a relative jump can be executed up to +127 memory locations
forward and —128 == 256 — 128 = 128 locations backward.

The advantages of the relative juinp compared to the absolute jump are twofold. It
saves program space by using fewer bytes, and more importantly, the routine that
contains a relative jump is independent of absolute location in the program and can be
relocated without having to respecify the destination address.

Of the six relative jump opcodes, one is unconditional and four are Flag conditional
with branching oceurring on Nonzero, Zero, Noncarry, or Carry. The sixth, DJNZ, is
also conditional but instead of depending on a Flag bit, it is made on the value held in
the B register. Each time 2« DINZ instruction is executed, the B register is decremented,
and the decision to bhranch is based on whether B is Nonzero. If B is Nonzero then the
jump is made, otherwise the next opcode to be executed is the one following the
DJNZ. This is a particularly useful instruction and is comparable to the BASIC
FOR ... NEXT command for repeating a sequence of instructions a number of times
{equal to B} when the displacement operand is negative, before proceeding.

The remaining two unprefixed instructions of the Z80 Augmented set are register
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transfer instructions. EX AF, AF’ exchanges the current accumulator and flags registers
with the alternate pair, while EXX exchanges the current six general-purpose registers
with their alternate counterparts. The values stored are preserved and can be
recovered on the next exchange instruction.

The six so-called Miscellaneous instructions of the 8080 subset are shown in the
lower left box of Chart A.1. The NOP instruction is a do-nothing or “no operation”
useful for allocating space in memory or using up time in execution. The El, Di, and
HALT instructions are of significance for Interrupt servicing where external devices
can pulse the Interrupt Control line and cause the microprocessor to branch out of the
program it is currently executing. EI {Enable the Interrupt) and DI (Disable the
Interrupt}, permit or prevent the Interrupt control line from activatihg the micro-
processor. HALT stops the program with recovery only possible by either pulsing the
Reset Control line, or from a pulse on the Interrupt Control line after the HALT
instruction has been executed, and this only provided that the Interrupt had been
enabled (EI) previous to the HALT. This latter technique is used excessively by the
Timex/Sinclair B&W models in SLOW mode.

The last instructions are the most essential ones for the Timex/Sinclair interfacer.
Although many versions of BASIC on 80 family microcomputers include commands
INP and OUT, the Timex/Sinclair does not. We must use the IN A(NY and OUT
(N),A machine instructions in BASIC USR {User) routines if we wish to communicate
with external devices. These are two-byte instructions whose second byte (operand) is
the device code. We shall have more to say about these instructions in Chapter 4.

Now that we have surveyed the range of machine language instructions, we shall
conclude our discussion of the Z80 microprocessor by referring to the Table included
on Chart A3, As we noted previously, each machine instruction takes a definite
amount of time to execute. This time, ¢, is measured in number of clock cycles, where
the actual duration of each clock cycle depends on the speed at which the
microprocessor operates {308 nanoseconds per clock cycle on the Timex/Sinclair
B&W models operating at a frequency of 3.25 MHz). There will be occasions when we
need to know specifically how long a portion of a program takes to execute. By
referring to the clock cycles table, the time can be computed by summing the s for
each instruction in the routine. All Z80 instructions are given in the table. The three
columns in the left box of the table cover single register reference, indirect register pair
reference, and direct register pair reference instructions. The various branch
instructions and the remaining instructions are given in the right box of the table. Note

that for the conditional branches, the number of clock cycles depends on whether the
decision is or is not met.

EXPERIMENT 3.1
THE BASIC USR FUNCTION AND MACH!INE CODE STORAGE

DISCUSSION  The USR tunction ailows machine language routines (o be executed from a
BASIC program. In the Timex/Sinclair, this function cails a machine language subroutine, The
format of the USR function can be put into a LET command: for example, the format we will use is:
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#H## LET L = USR M

where #if# is the BASIC program line number. Although any variable canbe gsed, we have useq L
because it is the same key as LET, =, and USR. The argument of the function, M, is the starting
{destination} address in memory of the machine !ang&age_subrouténe. _

After the USR functicn has been executed, the value assigned to the variable L equals the 16-
bit value held in the microprocessor's BC register pair on return to the BASIC program. If the
BASIC grogram recalculates L into two bytes by the following lines:

INT({L/258)
L ~ 256%B

150 LET B
160 LET C

we can recover the contents of registers B and C. Recallthat the decimal value of a 18-bit number
is obtained by the eguation:

L. = 256%(MSBy) + L.8By

where L is the 16-bit decimal value, MSBy is the more significant decimal byte {register B in our
case}, and L8By is the less significant byte (register C).

Wa noted inChapter 1 that different addresses have to be used forthe'B&W a_nd Color models.
This is primarily because the only simple way 10 SAVE and LOAD machine routines qn thg B&W
modetls is by storing them within a BASIC program. The particular ac{dress M = 16514is uniquein
the B&W computers (ZX81, TS1000, and TS1500) because H is the first memory location
avaitabls “inside” the BASIC program. The B&W operating system always starts storing a BASIC
program at memory location 16509, Five bytes are usedto hold the line number (‘{wo bytes}, the
length of the line {two bytes), and a command code (one byte). If we make the first line of the
BASIC program a REM statement followed by as many bytes (or character spaces, because
each character uses one byte) as are needed to store the machine language subroutina(s), the
first character will he at memory address 16514(B&W). The space occupled by a REM statement
is ignored by the BASIC interpreter when the program is RUN. Editigg the rest qf the !BASEC
program does not changs the address locations of the code and the entire program including the
machine language routine(s) can be SAVEd on cassette. Machine code can be easily SAV[T”Zd and
LOADed with the Color models. Therefore, itis easier to store the machine lgnguagg routfpes at
the top of memory where the operating system cannot disturb it. To keep our instructions simple,
we will store our machine code at the same addresses inthe TS2000 and the Spectrum, Becagse
top of memaory for the 16K Spectrum is 32767, we have selected address 321 30 asthe 'siartmg
address of our routines for the Coior models. The advantage to using this address is more
apparent if the separate high and tow bytes of the B&W and Color addresses are compared:

MODEL ADDRESS LOW ADBRESS BYTE HIGH ADDRESS BYTE

B&WwW 16514 130 64
Coior 32130 130 125

Thus only the high address byte wil be diferent in our machine code listings when an absolute
address is referenced.
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BASIC PROGRAM

1 REM 123456789 123456789 1234567890 {for B&W models)
1 CLEAR 32129 {for Color models}
10 LET 2 = 0

20 PRINT ¢ NUMBER OF BYTES? ¥

30 INPUT N
40 LET ¥ = 16514 (for B&W models)
40 LET M = 32130 {for Color modeis)

50 PRINT “ ENTER CODE: ”
60 FOR I = M TO M+N-1
70 IF Z <> 0 THEN GOTO 100
80 INPUT B
90 POKE I,B

100 PRINT I; “=" ;PEEK I
110 NEXT I

120 PAUSE 33333

130 LET Z = 1

140 LET L = USR M

150 LET B = INT (L/256)

160 LET C = L — 256*B

170 PRINT “B = "B, « (¢ = ?7:(C

PROCEDURE

STEP 1 ENTER the BASIC program. Throughout the rest of the experimants, differences for
the B&W and Color models will be indicated with the same fine number listed twice as shown in
this listing. DO NOT enter the statements “for ... models” into the BASIC line. The number of
bytes that need to be allocated in the REM statement are shown in groups of ten {counting the
space) with al} digits shown in the last group before <ENTER>>. The CLEAR ¥ command for the
Color models protects the memory above that address from the operating system.

STEP 2 Ourfirst project is to verify that the USR function returns the Band & register vaiues.

To do this, we need a simple machine language subroutine to Load immediate BC with a pair of
numbers and return to BASIC. The instruction we need is: LD BC,NN. Our subroutine will be:

INSTRUCTION  DECIMAL

ADDRESS MNEMONIC CODE
B&W / Color
16514 /32130 I.D BCNN 1
16515/32131 <N> 201
16516 /32132 <N 1
168517 /32133 RET 201

How many bytes long is the subroutine? Your answer shouid be 4.

STEP 3 RUN the BASIC program. Respond to “NUMBER OF BYTES?” with 4 and ENTER,

!
H
i
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STEP 4 Now respond to "ENTER CODE:” by ENTERIng each of the four numbers of the
machine larnguage subroutine in succession. The program will print your entries onthe screen so
you can check your entries against the list. If you make a mistake, press BREAK and reRUN.

STEP 5 After your program is enterad correctly, press any key {otherthan BREAK] to getout
of the PALISE 33333 command at line 120, What do you observe forthe values of Band C printed
on tha screen? You should have B = 1 and C = 201.

STEP 6 What is the distinction between the 15 at addresses 16514/32130 and 16516/
32132 and the 201s at addrasses 16515/32131 and 16517/321337 Which are opcodes and
which are operands?

STEP 7 ReRUN the program but choose different numbers for the values at addresses
16515/32131 and 16516/32132.

STEP 8 LIST the program, If you are using a B&W model, what do you observe in the REM
statement? Look up the codes for the first four characters inthe Appendix of your User's Manual,
SAVE the BASIC program on cassette for the rest of the experiments in Chapter 3.

SUMMARY In addition to verifying that the SR function returns the value of the B and C
registers, we have seen that a machine language program works like a subroutineand returns {o
the BASIC program on a BET instruction. The experiment also illustrates the Immediate Load
register Transfer machine language instruction.

EXPERIMENT 32
MACHINE LANGUAGE ARITHMETIC AND LOGIC OPERATIONS

DISCUSSION We have said that all arithmetic and logic operations are performed on the
Accumulator with any one of the other registers (including the Accumulator itself). Moreover, the
various bits in the Flag register are aitered as a result of these operations. Because we have seen
that we can obtain the contents of registers B and C from the BASIC USR function, we need a
scheme for transferring the A and F bytes to B and C so that we can observe the resuts of the
math ops. The AF register pair can be placed on the Stack with a PUSH AF instruction. Gnce on
the Stack, these bytes can be placed in BC with the PGP BC instruction.

The ten Arithmetic and Logic operations found in the upper right box of Chart A1 wil be
investigated. [n particular, the Fiag register bits witl be examined and refatec to the operation
executed. The Flag bits are:

F7 F6 F5 F4 F3 Fz F1 FG
MINUS  ZERO  NEGATE X HALF X EVEN CARRY
CARRY PARITY/
OVERFLOW

where X means the value of the bit is unassigned and indeterminate.
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PROCEDURE
STEP 1 LOAD the BASIC program from Experiment 3.1 i it is not aiready in memory.

STEP 2 Todisplay the binary vaiues of B and C so that the individual bits can be examined,
add the following lines to your BASIC program:

200 DIM B(8)

210 LET B§=« »

220 DIM C(8)

230 LET %=« »

240 FOR J=8 TO 1 STEP -1

250 LET B(J)=INT (B/2**(J-1))
260 LET B=B-B(J)*{2%*(J-1))
270 LET B$=B$+STR$ (B(J))

280 LET C(J)=INT (C/2**(J-1))
290 LET C=C-~C(J)*(2**(J-1))
300 LET C$=C$+STR$ (C(J))

310 NEXT J

320 PRINT B$,C$

330 PRINT TAB 16; “ MZ=mwun- e

This routine will take about 30 seconds to run. SAVE the BASIC program on cassette for use in
subseguent experiments.

STEP 3 The firstinstruction we shall examine is the XOR A, which performs an exclusive OR
on A with A. The subroutine we need is:

INSTRUCTION  DECIMAL

ADDRESS MNEMONIC CODE

B&W / Color

16514 /32130 LD AN 62
16515/32131 <N> 255
16516 /32132 XOR A 175
16517 /32133 PUSH AF 245
16518/32134 POP BC 193
16519/32135 RET 201

HUN your program and ENTER the six codes of the subroutine as in Experiment 3.1, After you
have compared your list for corraciness, rememberto press any key (except BREAK) to continue
past line 120.

STEP 4 Make up a chart with headings:

<16515/32131> <B> <C7> <C6> <G0>

op A(INITIAL) A(FINAL) MINUS ZERO  CARRY
XOR 255 0 0 1 0
127

i
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Your results should have heen as shown in the first line where A(INITIAL) is the byte in the
subroutine at address 16515/32131, A(FINAL] is the value of B printed on the screen, and the
Flag bits are from the binary digiis of C printed on the screen and underlined by M, Z, and C,
respectively,

STEP & You can substitute other numbers into A by changing the operand on line
16515/32131. Rather than reloading the subrouting each time just to change one number, anaw
number can be POKEd directly by typing {(without & line number)

POKE 16515,127 <ENTER> (B&W)
POKE 32131,127 <ENTER> (Golor)

then rerun the program by ENTERIng;

GOT0 80

Afer doing this, fill out your chart,

STEF 6 Repeat Siep 5 several times, each time change the number 10 be loaded into A
What can you conclude about XOR A7 You should observe that it always CLEARS the A register
and sets the Flags for a value of zero.

STEP 7 Now change the operation in line 16516/32132 from XCR to ADD AA by

POKE 16516,135 <ENTER> (B&W)
POKE 32132,135 <ENTER> {Color}

and

GOTO 60 <ENTER>

Try several numbers again as in Step 5.

STEP 8 Repeat Step 7 using other opcodes for the Arithmetic and Logie ops un#il you are
satistied you understand the results of each. Continue recording your results in your chart so you
can review them as you progress. In particular, of what spseciat value is the operation ORA7? You
should find that the fiags are properly set for the number in the A register without altering the
number. This is especially useful because the Transfer ops do not alier the flag bits.

STEP 9 To carry out these ops with two different registers, we need a new subroutine to load
two registers. RUN your BASIC program, and enter the eight codes for the following subroutine:

INSTRUCTION  DECIMAL

ADDRESS MNEMONIC CODE
B&W / Color
168514/32130 LD BCNN 1
16515/32131 <N 127
16516/32132 <N> 128
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16517 /32133 LD AB 120
18518/32134 ADD AC 129
16518/32135 PUSH AF 245
16520/ 32136 POP BC 193
16521 /32137 RET 201

Write down your results in a chart having the headings:

<16516/32132> <(16515/32131> <B> <C7> <CB> <CO0>

opP A{(INITIAL) C{NITIAL) A{FINAL} MINUS ZEROQ  CARRY
ADD 128 127 255 1 0 0

You should have the resulis shown.

STEP 10 You can POKE different values for C and B into locations 16515/32131 and
16516/32132 and also change the operations inlocation 16518/32134 but remember touse the
operations for the A,C registers.

EXPERIMENT 3.3
MACHINE LANGUAGE ROTATE OPERATIONS

DISCUSSION  There are essentially two types of rotate operations: the eight-bit rotate in which
the Carry bit Is in parallel with either D7 or DO (depending on direction of rotation), anc the nine-bit
rotate in which the Carry bitis in series with the eight bits of the register. The Carry bitis the only
Flag affected by the Rotate and Shift instructions, As was pointed out earlier, the four rotates on
Chart A1 belong to the 8080 subset and are also repeated in the upper right box of Chart A4 {A
column} when they are used in the ZBO Augmented set and require the Prefix 230. The only
difference between them is the time of execution. if you took on the Timing Table (Chart A.5) you
will find that the prefixed Rotates take 8t and the 8080 subset Rotates take 4t.

PROCEDURE

STEP 1 lLoad the Basic program from Experiment 3.2 if it is not already in memory.

STEP 2 We can examine the 8080 rotates using almost the same subroutine we first usedin
Experiment 3.1 by loading an immediate operand into A and ORing itto setthe Fiags based onits
value, This is because the Transfer ops do not affect the Flags but the Math ops ¢o. RUN the
BASIC program and load the following 7 codes!

INSTRUCTION  DECIMAL

ADDRESS MNEMONIC CCDE
B&w / Color
16514/32130 LD AN 62

16515/ 32131 <N> 128
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16516/ 32132 OR A 183
165617 /32133 RLOA 7
16518/32134 PUSH AF 245
16519/32135 POP BC 193
16520/32138 RET 201

STEP 53 Make up a table to record your observations using the headings:

<16515/32131> <B> <C7> <C6> <CO>
OP A(NITIAL) A{FINAL) MINUS ZERC  CARRY
RCLA  129=10000001 00000011 1 0 1

Your resuits should be identicai 10 the first line shown,
STEP 4 Change the rotate instruction to RRCA by

POKE 16517,15 <ENTER> (B&W)
POKE 3213%,15 <ENTER> (Color)
GOTO 60 <ENTER>

and record your resuits.

STEP 5 RepeatStep 4 with the RLA and RRA operations POKEdintolocation 16517/32133.
Make special note on the rasults of the Carry flag compared to the RLCA and RRCA ops. You
might also want to change the initial A value in 1651 5/32131 t0 128 ang 1 to verify your results.

STEP 6 The Z80 Augmented Rotates can be studied with a subroutine that returns the B
register and the Fiags register. Note carefully the Transfer ops because these Rotates are notin
the Accumulator but directly in the register itself (B for our case). RUNthe BASIC program and
enter the following 9 opcodes:

INSTRUCTION  DECIMAL

ADDRESS MNEMONIC cobE

B&W [/ Color

16514 /32130 LD BN 6
16515/ 32131 <N 129
16516/32132 XOR A 175 {Clears A and F)
16517 /32133 Prefix 203
16518/32134 RL.C B 0
16519/32135 LIDAB 120
16520/32136 PLISH AF 245
16521 /32137 POP BC 193
16522 /32138 RET 201

STEP 7 Complete your table from Step 3 making enough changes in operations at 16518/
32134 and values at 16515/32131 to complete your understanding. Remember to work from
the B coiumn of Chart A5
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EXPERIMENT 3.4
INDIRECT LOAD MACHINE LANGUAGE INSTRUCTIONS

DISCUSSION  The LOAD instruction transfers the contents of one register (source) to another
register {destination). We have seen that there are two kinds of LOAD instructions: direct and
indirect, Besides the microprocessor's registers, the source regisier can be any memory register.
When the memory registar is part of the program list, we have called the transter an immediate
foad because the source register is the operand of the opcode. These transfer instructions are
called direct loads because the source register is identified directly by name as eitherr(A, ... L)
or N. The indirect load is a transfer instruction where the source register is identified by the 16-bit
register pair that hoids (points to) the address of the source register. The mnemonics for indirect
load are written with parentheses around the 16-bit address, such as LD A(BC) and LD A,(NN)
where the second load is an immediate indiract transfer and (NN) is a two-byte operand of the
opcode holding the address whose contents (one byte) is 10 be loaded into register A.

One of the extra capabilities of the ML register pair compared to BC and DE is a two-byte
transfer. The operations LD HL,(NN} and LD (NN),HL are immediate indirect transfers where Lis
lvaded from, or loaded into, respectively, memory location NN. The microprocessor then
increments NN to NN-+1 and transfers the contents of that location from or to register H. There
are six other opcodes of the form LD (HL),rand LD r,{HL). The latter are given as coiumn M onthe
lower right table in Chart A2

PROCEDURE

STEP 1 Loadthe BASIC program from Expsriment 3.1. If program 3.3 is already in the com-
puter either delete lines 200-330 or ignore the additional printout.

STEP 2 Forourindirect loads, we need to use memory locations that are protected fromthe
BASIC interpreter. In the B&W models, these are the unused character spaces in the REM
statement on line 1 of the BASIC program. Because 30 iocations have been reserved, the highest
memary register available is 16543. in the Color models, there are al least 638 locations
CLEARed, therefore the unused bytes following the machine code up to 32767 are available.

STER 3 i you are using a B&W modei, then enter the following BASIC command:
PRINT PEEK 16543 (B&W}

You should obtain 28(B&W) which is the character code for zero (the last character in the REM
staiement). Now enter:

POKE 16542,37+128 {B&W)
and POKE 16543%,28+128

LIST your program. The last two characters in the REM statement should still appear as 9 and ¢
but in inverse video.

if you are using a Color model, enter:

POKE 32158,47 {Colorn)

Microcomputer Fundamentals

and PORE 32159,48
then PRINT PEEK 32158; PEEK 32159

The numnerals 9 and 0 should appear on your display.

STEFP 4 We can write a subroutine to load these vaiues into L and H using the LD HL (NN}
instruction. Of course, we will need to then transfer H and L to B and C if we are to have them
returned by the USR function. For the B&W computer models, the address NN = 16542 must be
rewritten as two bytes or a base 256 number, equal to 64(MSBy) and 158(LSBy) because
64°256-+158=16542. For the color computer models, the address NN=32158 equals
125(MSBy) and 158({LSBYy).

STEP & RUN the BASIC program, and enter the following six codes.

INSTRUCTION  DECIMAL
ADDRESS MNEMONIC CODE

B&W / Color
16514/32130 LD HL.(NN) 42
16515/32131 <Lo N> 158
16516/ <HIN> 64
/32132 <Hi N> 125
16517/32133 PUSH HL 229
16518/32134 PGP BC 193
16518/32135 RET 201

B and C shouid return with the values we POKEd in Step 3.

STEP 6 Therestofthe INDIRECT transfers are one byte, or single register, loads. Touse the

{HL) or M opcodes, we will keep using location 16542/32158. RUN the BASIC program, and
ENTER the following seven codes:

INSTRUCTION  DECIMAL

ADDRESS MNEMONIC CODE
B&W / Color
16514 /32130 LD HLNN 33
16515/32131 <Lo N> 158
168516/ <Hi N> 64
/32132 <Hi N> 125
16517 /32133 LD B,(HL) 70
16518/32134 INC HL 35
16519/32135 LD C(HL) 78
165820/32136 RET 201

B and C should return with the values you found in Step 5 except reversed.
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STEP 7 Totransfer data from one of the microprocessor's registers (o a memory register,
both the destination and address and the contents of the byte to be transferred have to be loaded
directly in the subroutine. RUN the BASIC program, and ENTER the following seven codes!

INSTRUCTION  DECIMAL
ADDRESS MNEMONIC CODE
B&W / Color
16514 /32130 LD BCNN 1
16515/ 32131 <Lg N> 158
16516/ <HI N> 64
/32132 < Hi N> 125
16517 /32133 LD ABC} 10
16518/32134 INC BC 3
16519/32135 LD (BCLA 2
16520/32136 RET 201

What values for B and C should be printad on the screen? This will be address 16543/32159. 1
you LIST the B&W program, the two last characters in the REM statement sheuld now both bethe
number 9 in inverse video.

EXPERIMENT 35
ABSOLUTE BRANCH INSTRUCTIONS

DISCUSSION  The branch opcodes of the 8080 subset include unconditional and conditional
Jumps, Calls, and Returns, Because the Timex/Sinclair USR function implements the uncondi-
tional CALL, we have in essence basn performing the three-byte CALL instruction by providing
the 16-hit destination address as the argument of the USR function in BASIC. Of course, ali the
subroutines have also used lhe unconditional Fieturn opcode as well. We shall examing the
absolute JUMP instructions with the understanding that subroutine Calls and Returns oparate ina
similar manner.

PROCEDURE
STEP 1 Load the BASIC program used in Experiment 3.2.
STEP 2 RUN the program, and enter the following 16-byle subroutine:

INSTRUCTION  DECIMAL

ADDRESS MNEMONIC CODE
B&W 7 Color
16514 /32130 LD AN 62

18515/ 32131 <N> 1

16516/32132
16517732133
16518/32134
16519/32135
16520/
/32136
18521/32137
16522/32138
16523732139
16524 /32140
16525/32141
16526/32142
16527 /32143
16528/ 32144
16529/32145

ADD AN
<N>
JPNZ NN
Lo Addr.
Hi Addr.
Hi Addr.
PUSH AF
POP BC
RET
PUSH AF
LD AN
<N>
POF BC
LD BA
RET
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198
128
194
140
€4
125
245
193
201
245
62
85
193
71
201

Note that the routing will return A=85 (alternate Us and 13 in binary) if it makes the jump,
otherwise the value will be A(Initial}+128. The Flags will nave the same values irrespective of
whether or not the jump was made and will reflest the conditions at the time ofthe jumg decision;
thatis, onthe sumof A{initial)+ 128, Make a table such as the foliowing fo record your results. The

first entry should be as shown:

<16515/32131 >

opP
JP NZ,

A(INITIAL)

1

STEP 3 Using the same branch operation:

POKE
POKE
and GOTO
then FPOKXE
POKE
and GOTO

Record your results for each case.

165156 ,255
32131 ,255
60
16515,128
32131,128
60

<B> C
AFINAL) M Z C
10 0

<C>

(B&W)
(Colory

(B&W)
(Colon)

STEP 4 Now change the branch operation of JP ZNN by

POKE 16518,202
POKE 32134,202

(B&W)
(Color}

and repeat the three values for A(initial) as in Steps 2 and 3.
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STEF & 'Repeat Step 4 using JP NC NN (210); foliowed by JP C.NN (218), JPPNN (242); and
JP MNN (250} When you have finished, your table should have all the information to verify the
foliowing summary table:

BRANCH DECISION FOR A= N - 128

N= 1 255 128

A=129 127 0

OPS: JP NZ Yes Yes No
JPZ No No Yes

JP NC Yes No NG
JP C No Yas  Yes

JPM Yes No No

JPP No Yes  Yes

STEP 6 Inthe table given above, you will see that the NG/C and M/P resulis are identical.
The only way they could be made to differ on an ADD instruction is by obtaining a resuit in A(Final)
which would set the Zero flag and not set the Carry flag. This conditionis not possible foran ADD
operation if A(initial) is nonzerc. If you wanted to see a distinction between JP C NN and JP P.NN,
how would you modify the subrouting? Try replacing ADD AN with SUB AN and repeating the
two jump instructions for the three different values of Afinitial) used previously.

EXPERIMENT 3.6
RELATIVE BRANCH INSTRUCTIONS

DISCUSSION  If you examine the refative jumps for the Z80 Augmented instructions, you will
note that there are four unconditional jumps based only on two flags: Zero and Carry. Because
they use a one-byte operand, the relative jumps (including the unconditional jump, JR d, and the
decrementing jump, BJNZ) can only jump forward up to 127 locations and up to 128 locations
backwards. Recall that the one-byte operand is interpreted as a two's complemant number and
that the displacement is relative to the Program Counter. At the time of the branch decision, the

Prc}grdam Counter equals the address of the byte folicwing the operand (or two more than the jump
opcode),

PROCEDURE
STEP 1 Load the BASIC program used in Experiment 3.5

. STEP 2 We can write a subroutine simiiar to the one in Experiment 3.5 but use the bondé-
tional refative jump instruction instead of the corresponding absolute jump. Because thiswillbe a
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forward jump to & higher memory address, it will flustrate a positive aperand. To lllustrate a ump
backwards, we will substitute the unconditional relative jump for the second RET and jump back
to the first return instruction. RUN the BASIC program and load the following 16 codes:

INSTRUCTION  DECIMAL

ADDRESS MNEMONIC CODRE
B&W / Color
16514 /32130 LD AN 62
16515/32131 <N>> 1
16516/32132 ADD AN 168
16517 /32133 <N> 128
16518/32134 JB NZ.d 3z
16519/32135 <d> 3
16520/32136 PUSH AF 245
16521 /32137 POPBC 193
16522/32138 RET 201
16523/32139 PUSH AF 245
16524 /32140 LDAN 52
16625/ 32141 <N> 85
16526/32142 POP BC 193
16527 /32143 LD BA 7t
16528/32144 JRd 24
16529/ 32145 <d> 248

STEP 3 Before pressing any key to get past the PAUSE command, verify the displacement
operands at acdresses 16519/32135 and 18529/32145. In the first case, because address
16520/32136 is the zero displacement and we wish to jump to 16523/32139, the operand value
should be 3. In the second case, 16530732146 is zero reference, 16529/321451s —1 or 255,
18508/32144 is — 2 or 254, then the RET at 16522/32138 is — 8 or 248, Note that the sum of the
absclute values of the negative number and its two's complement is always 256.

STEP 4 Your results for this subrouting should be the same as those obtained in Experiment
35,

STEP 5 As we noted earlier in this chapter, the [DUNZ instruction uses register B as a
countdown register. The most typical applications of this instruction are similar to the NEXT
command in BASIC, where a preceding LD BN instruction would corespond to the BASIC
command: FOR V == N to 0 STEP — 1. We want to verify that Bis zero onreturn from the subroutine
and that the loop was executed B{lnitial) times. LOAD the BASIC program from Experiment 3.1, 0r
delete line 330 from the BASIC program used in the last experiment because register C will not be
loaded from the F register,

STEP 6 RUN the BASIC program and ENTER the following 7 codes:
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INSTRUCTION  DECIMAL
ADDRESS MNEMONIC CODE

B&W / Color

16514 /32130 LD BC,NN 1
16515/32131 <C> 0
16516 /32132 <B> 255
16517 /32133 INC G 12
16518/32134 DUNZ d 16
16519/32135 <d> 253
16520 /32136 RET 201

Your results should be B=20 and C=255,

STEF 7 Calculate the time dslay involved in the DINZ icop by finding the number of clock
cycles gac?} instruction in the loop uses from Chart A.3. The INC C instruction takes 4¢ and the
DJNZ d instruction takes 8t for ail but the fast time it is executed, Therefore, atotal of 12t times 255
c%gck cycles are usedinthe loop. For a tof 300 nanoseconds, thetime delayis 12*255*0.30r 929
micreseconds, which is approximately 1 miflisecond (0.001 seconds).
_SUMMARY These experiments have ilystrated most of the types of machine language
msirqctlo'ns of the 80BO subset and some of those from the 780 Augmented set. The BASIC USR
z‘ungtlon is & vgry useful command and permits the use of machine fanguage subroutines o
achleve executions about 1000 times faster than the BASIC interpreter, Cther subroutines can be
written to demonstrate those instructions that have not been covered. It should also be noted that

as many subroutines as desired can be called from a BASIC i i
uting program simply by changing the
argument (destination address) of the USR function. o o

040

input and output ports

DEVICE SELECT PULSES

At the end of Chapter 3 we saw that there are two machine codes that are used to
transfer a byte between the A register and an external device. The opcode mnemonics
are IN A,(N) and OUT (N),A. These are two-byte instructions whose one-byte
operand, (N}, is an indirect reference to the device address. The device address is an
eight-bit code which appears on the Low Address bus, A7 - AQ, during the execution of
the instruction. Because the device code is eight bits, it is possible to have amaximum
of 256 input device addresses and 256 output device addresses. Another name for a
device is port and another name for a device address is port address. A peripheral
device, such as an instrument for measurement or control, or a support device, such as
a printer, may require more than one port in order to operate. For example, the printer
is an output device, but there may be conditions that the computer must know before
it transfers the code of a character to be printed such as: Is the printer on? Isthe printer
out of paper? Is it busy still printing the previous character? Notice that each of these
conditions is binary (yes or no) and therefore each needs only one bit to inform the
computer of its condition. This type of I/O interaction is referred to as hendshaking.
Up to eight conditions could form one byte, which would be transferred INto the
computer before it tried to OUTput the next character to be printed. Thus, a printer as
a peripheral device might have an input port as well as an output port.

We saw in Chapter 2 that eight bits, such as a device { port} address, canbe decoded
so that only one output channel of a decoder is uniquely activated. This allows the
conversion of eight simultaneous signals in parallel on the Address Bus into a single
pulse which is active ONLY when a specific {1 out of 258) eight-bit code is present. We
shall refer to this single pulse as a Device Code. We can illustrate a one-channel
decoder with the 74LS30 eight-Input NAND gate shown in Figure 4.1. In this figure,
four inverters of a 741.504 IC are used in conjunction with a T4L830 eight-input NAND
gate to decode the low address bus. Because the unique state of a NAND gate hasa(
output only when all inputs are in a logic 1 state, then the Device Address 43 (decimal)
will be the only possible combination of 1s and 0s on the low address bus that will
cause the output of Device Code 43%. Note that the asterisk indicates that the device
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LOGIC STATES
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Figure 4.1 One-Channel Decoder.

code is active low (a logic 0). For all 255 other addresses on lines AT-AOQ, the output of
the NAND gate will remain at a logic 1.

This scheme is perfectly adequate if an interface design requires only one device
code. If our interface design needs to create more than one port address then we can
choose one of the multichannel decoders such as the 8-channel 7415138 studied in
Experiment 2.6 or the 16-channel 74154 described in Chapter 2. Whatever the
decoding scheme used, it answers the question of where? concerning the data transfer,
but leaves unanswered the questions of when? and how? Recall that earlier in Chapter
3 we saw that there are control signals generated by the Z80 microprocessor which can
be combined with OR gates to generate the control I/O signals IN® and OUT?®. These
170 control signals answer the questions of when and how. If we are to obtaina single
signal which will activate a particular device, then a logical combination of the device
code and the I/0 control pulse must be produced. This final result is the Device Select
Pulse (DSP). Because the IN* and OUT® control pulses are active low and most
decoders also produce an active low channel output, the most common method of
creating the Device Select Pulse, using the unique state of a gate,isto OR {for an active
low DSP) or NOR (for an active high DSP) the device code with the 1O control pulse.
The choice made depends on the logic requirements of the device itself, Each device
code can be combined with both 1/0 control pulses as shown in Figure 4.2. In the
tigure, different gates are shown to illustrate opposite active states for the Device
Select Pulses: IN 43® (active low} and OUT 43 {active high). Note that it is impossible
for the I/O control pulses to oceur at the same time because the control lines RD® and
WR® cannot be generated during the same machine cycle of an instruction.

The concept of Device Select Pulse generation is one of the most important
concepts of interfacing. We can summarize with the following statements:

I The machine language instructions IN A,(N) and QUT {N),A transfer a data
byte from and to, respectively, a port having a one-hyte address, N.

Input and Output Ports

2 To form the Device Select Pulse that activates a particular port, the eight bits
of the port address occurring on the Low Address bus must be decoded to form
a unique Device Code Pulse.

3 Depending on the direction of transfer, the Device Code must be logically
combined with either IN® or OUT?® control pulses to form the Device Select
Pulse.

INPUT PORTS

An input port is a peripheral device, which, when activated by its Device Select Pulse,
transfers a byte onto the Data Bus. The microprocessor accepts the data byteand loads
it into the Accumulator register. Implied in this process is the condition that the output
lines of the input port in question and those of all other input ports are connected in
parallel to the data bus. We saw in Chapter 2 that the outputs of digital devices cannot
be connected together unless they are connected through three-state buffers. Also
implied in the data transfer from an input port is that there is valid data available at the
port when the microprocessor executes the IN A, (N) opcode. Typicaily, the
peripheral device and the microcomputer act independently of each other—each
carrying out its own functions without regard to the other—until the moment of
transfer. This type of operation isreferred to as asynchronous. In order to preserve the
data byte generated by the input port, a set of eight latches must be incorporated in the
circuitry of the input port. The three main components of an input port are, therefore,
the data source or generator, a data register which may be gated {enabled) by the data
generator, and a three-state buffer. Figure 4.3 shows the block diagram of a
generalized input port.

The data source is a general device that generatesa data byte: it may be assimple as
a set of eight switches each of which selects a logic 0 or 1 state. More advanced data
generators will be described in Chapters 5 and 6. The register is not necessarily
separate from the data generator. The point of including it as a separate component of
an input port is to emphasize that the data must be held long enough to be acquired by
the microcomputer. (Of course, a set of switches serves asits ownregister.) The Ready

L
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P B B
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Figure 4.2  Device Sefect Pulses.
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(RDY) output of the data generator is called a Flag. Data generators usually have such
a control line to be used to indicate the presence of valid data. It may be used as
indicated in Figure 4.3, or it might be used as a separate input port (one bit} for the
computer to determine the presence of valid data. The three-state buffer is an essential
element on any (and alll) input port. If it is already incorporated into the data
generator, an additional three-state buffer is not necessary. This would be determined
by the specifications of the particular data generator. Figure 4.3 also shows
schematically how the Device Select Pulse is created. The connections to the Address,
Data, and Control Buses of the computer shown are typical for every input port.
Further refinements to an input port, in addition to the previously mentioned second
input port for the Ready flag, might include an output port to clear the register and/or
trigger the data generator to start another generator eycle.

OUTPUT PORTS

As opposed to input ports, output ports are passive. There is no need to isolate output
ports from the data bus with three-state buffers because they do not attempt to load
the data bus with information; that is, they are receivers not transmitters. The
important point with output ports is that each requires a register to “latch” and hold the
data byte intended for it. (Recall that the data on the Data Bus is valid only for a few
microseconds at best.) The need for a Device Select Pulse as the gate enable control
signal to the output port’s latch should be apparent. Figure 4.4 shows the block
diagram of a generalized output port. As in the case of the input port, the output portis
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EN
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Figure 4.3 General Input Port.
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Figure 4.4 General CGuput Port.

activated by a unique Device Select Pulse created from the Device Code and a
Control Pulse. The control pulse, QUT*, is generated in turn from the microprocessor
signals TORQ® and WR® on execution of the instruction OUT (N},A. The data byte
transferred from the computer's Accumulator register to the device whose address
code, N, is the operand of the instruction in the machine language program. Once the
data byte being transferred is latched into the device’s register, the outputs of th'e
register will hold the byte until the next OUT instruction to this device address is
executed.

The sequence of events for output (or input) can be put into perspective by
examining the timing diagram of the process. This is shown in Figure 4.5. The first six
lines in Figure 4.5 are the various control signals from the Z80 microprocessor. The
Clock input,¢ (Phi), is the fundamental timing control and operates ata frequency of
3.95 MHz in the Timex/Sinclair. M1 is the control output that signals the start of anew
instruction: this is always the fetch operation, which places the program counter, PC,
on the address bus to read the next opcode from memory. The memory read, MREQ®
and RD®, puts the opcode on the Data Bus. When the opcode is the OUT (N),A
instruction, the next operation is a second memory read to obtain the operand from
memory. The third operation in sequence is to place the operand value, which is the
device address code, on the low Address Bus and the value stored in the A register on
the Data Bus. After one clock cycle these buses are stable, then the control signals
JORQ® and WR? are activated. The entire process takes 11 clock cyclesin accordhaﬁce
with the t value given in Chart A3. In this type of timing diagram, the indiwdl'zai
Address and Data Bus lines are grouped together and show only when their respective
signals change. The values of the bus lines for each change are indicated by the labels
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Figure 4.5 Quiput Tirning Diagram.

shown, such as PC and N on the address bus and OUT, N, and A on the data bus. The
timing diagram for an IN A,(N) instruction would be similar except the RD*® control
line would be activated rather than the WR* line. In either case, the actual transfer
takes place in the time interval when the OUT* or IN® pulse is low.

THE T/8 INTERFACE CIRCUIT

We are now in position to understand the requirements for constructing an interface
circuit for a Z80 microcomputer such as the Timex/Sinclair. To perform Input/Out-
put we need the eight data bus lines, D7-D0, and the eight lines of the low address bus,
A7-A0. The Z80 control signals needed are input/ output request (IORQ*), read
(RD*), and write { WR*®), which will be gated to create IN® and OUT*®. Because the
drive capability (fan out) of these signals is limited to less than 2 milliamps, it should be
apparent that the first consideration should be to buffer them to increase their current
drive. In bringing these buffered signals out of the computer so that they may be
readily available for experimental interfacing, it would be convenient to also have
available a selection of Device Codes. With these available, it would not he necessary
to decode the address bus each time we wished to construct an input or output port,

The circuit for a Buffered 1/O Interface is shown in Figure 4.6. Five integrated
circuits are used. The 7418244 is 5 three-state Octal Buffer used to increase the drive of
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the eight low address lines. Because its three-state capability is not required, the enable
inputs at pins 1 and 19 are permanently enabled by grounding to a logic 0 state. The
7415245 is an Octal Bidirectional Bus Driver 1C. As indicated, each bus line is
equipped with two three-state buffers in opposition. The eight buffers in one direction
are enabled by logic 1 while the eight buffers in the opposite direction are enabled by a
logic 0. The direction control is located on pin 1. This IC is completely disabled for
either direction by a logic 1 on pin 19. Because no advantage is gained by disabling the
IC, pin 19 is permanently grounded to a logic0. The problem faced with interfacing to
the Bidirectional Data Bus is when to change its direction. As we noted with output
ports, data that is output is passive and causes no conflicts with other components of
the computer. It is when the Data Bus is to be “turned around” and input into the
computer from the outside that care must be taken, The problem that has to be solved
is how to avoid conflicts due to constraints imposed by the computer’s hardware and
software. In particular, the Timex/Sinclair uses several device codes for input and
output in controlling the video, cassette recorder, and the special Sinclair Logic IC.
The real problem, however, is that the device codes are only decoded using address
lines AQ, A1, and A2. Therefore, any device code of the binary form XXXXXABC will
activate the Sinclair port that is coded for ABC no matter what the value of XXXXX!
This type of decoding is called relative as opposed to the absolute decoding we have
described previcusly. The decimal device codes listed in the operating system
program in ROM are 251, 253, 254, and 255. Their corresponding octal values are 373,
375, 376, and 377, respectively. The advantage of listing their octal values is to show
that only the three bits of the least significant octal digit vary. As a consequence, for
example, all device codes 006, 016, . . ., 366 will also activate the device whose code is
J76. Because the Timex/Sinclair software always outputs a 3 for the most significant
octal digit on the low Address Bus for its internal devices, our solution is to turn the
Data Bus buffers around for input only when the IN A,(N) is executed for devices not
having an octal 3XX address code; in other words, only devices having N = 0XX, 1XX,
or 2XX octal codes can change the direction of the Data Bus buffers of the T41.5245.
These addresses in decimal will all be less than 192, The NAN D gate with inputs of A8
and A7 will have a logic 0 output only when device addresses of 192 or greater oceur
on the low Address Bus. The second NAND gate acting as an inverter to the first
NAND gate keeps the OR gate output at logic 1, which in turn keeps the Data Bus in
the output direction. For values less than 192 on the low Address Bus, the Data Bus
buffer OR gate will be a logic 0 only when the IN® control signal is also a logie 0.
Therefore, only IN A,(N) with N less than 192 will reverse the Data Bus buffer.
Two OR gates are used in the Interface circuit to create the IN® and OUT?® control
pulses from IORQ* and RD® and WR* as was previously discussed. The fourth OR
gate of the 74LS32 IC is used to create a response control pulse from the
microprocessor when it receives an interrupt request. We shall defer discussion of
interrupt operations to Chapter 7 except to note that the Z80 uses the IORQ" line
during an M1 (the first machine cycle of an instruction) as the indication it hasreceived
an interrupt request. Recall that an M1 cycle is always a read from memory {(MREQ)
operation {opcode fetch) and would never generate a IORQ pulse otherwise. The
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Interrupt request control is an input line to the fnicroprocessor and does notfneefi
buffering. It is taken directly from the computer’s edge connector to the Interface’s
connector. ‘
Cal'}!ie remaining circuitry of the Interface is not necessary but, as we mentmne:,;(si

earlier, is desirable. This is the Device Code generator implemented w1.th a74i‘,,81]
three-to-eight Line Decoder. Although the 741.S138 has only thr'ee data inputs, it é S0
has three gating inputs all of which must be in their active logic state for the i tg
decode its data inputs. One gate, G1, is active high, and the other two gate.zs, G2A an
G2B*®, are active low. By using the outputs of two NAND gates to comb.me two pairs
of address lines, A7 with A8 and Al with AD, we can obtain six address inputs for the
741.8138. The NAND gate output that combines A7 with A8 is the same as described
for the Data Bus direction control, In this way, the 7418138 can never decode
addresses above 191 because they could never operate as input pm‘gs because of.the
direction control on the Data Bus buffer. The NAND gate that combmesY address Ime‘s
Al and A0 is connected to gate G2B®. For G2B* to be enabled by the ! AND gate, it
follows that Al and A0 must both be in a logic 1 state. Address line A2 is conne':cted to
gate G2A®. The remaining address lines, A3, A4, and A3, are u'sed as the data input to
activate one of eight channels at the outputs of the IC. The active channe! outptht gges
to a logic 0 when selected with the rest of the channel outputs at a logic l."i eh e-
coding therefore yields octal device codes ON3, IN3, and ?N3 at each cha‘nne Wdalare
N is the three-bit value (0 to7) of address lines A3-A5. This means that this decoding
is also relative. These values in decimal are shown in Table 4.1. ’

Channels 6 and 7 are not shown in Table 4.1 because only the first six channels are
brought out to the cable connector. Note that each row differs from the I?eXt rov};f b)é 2
(corresponding to the middle octal digit) and that each ‘en}u.rnn differs by .
(corresponding to the most significant octal digit). The least significant .octal d.lgxt is
in all cases. The value of 3 was chosen because the only other values possible, using one
NAND gate to combine two of the three lowest address bits to gate QﬁB. and t%le th].rc}
bit to gate G2A®, were 5 and 8. Either of these choices would conilict with the mt.erng
device codes, whereas 3 is the Sinclair Printer device code (for both output an“d {nput
for handshaking} and cannot cause conflict. The 1/0 Interfa?e has been “piggy-
backed” onto the Sinclair Printer interface and both operated without any problems.

TABLE 4.1 /O INTERFACE DEGIMAL
DEVICE CODES

CHANNEL DEVICE CODES

(A5 A4.A3) tATABE O 1 2
0 3 87 131
1 11 75 139
2 19 83 147
3 27 91 155
4 35 99 183
5 43 107 171
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The I/0 Interface circuit can be constructed on a3” X 3% predrilled board having
holes drilled on 0.10” centers in both directions and using wirewrap sockets to mount
the 1Cs and cables. A wirewrap PC edge connector is also mounted but must be cut
from a larger (more than 23 pairs of contacts) unit to allow for open ends to fit onto the
computer board. The list of components for the Interface board and the experiments
is given in Appendix B. The authors found the wirewrapped unit adequate; however, a

fair amount of interference caused more video picture noise than desirable. A printed

circuit board that eliminates this problem is available. Addresses of suppliers for the
board and other components are given in Appendix C.

EXPERIMENT 4.1
PULSE STRETCHING AND BUS ACTIVITY

COMPONENTS 1 * 74121 Monostabie
1" Lamp monitor
1* 22-Kohm resistor
1 *1.0-pF capacitor

DiSCUSSIONJ The 7415138 three-to-eight Line Decoder in the 1/0 interface cirouit refatively
_decodes the eight bits of the low Address Bus a! alt imes. We saw in Table 4.1 that each channel
is aptxvqted by three different addresses. It is important to understand that the decoder does not
distsﬁgmsh between memory references and 1/0 device references. Because the low Address
Bus lines are always changing as the computer program sequences through memeory, every
address from the program counier that matches the decoder channels will activate that c'hannel
output. Because each low address is accessed by the program onthe average of one time in 256
then we would expect to see practically continuous activity on each channel. However each,
pulse is too short to be seen by an LED probe unless #s duration can be “stretched”to a %)eriod
long enough to see: roughly from the approximate 1-microsecond pulse to about 10 milliseconds
or 10,000 times. ’

A monostable integrated circuit such as the 74121 can be used to monitor pulse activity. Lising
the pulsetobe cbservedas a trigger, the monostable IC generates a puise of duration determined
by an exte{nai resistor and capacitor connected 1o two pins of the IC. The product of units of
rgsm?agce in ohms and capacitance in farads is a time constant in units of seconds. The digital
c!rcunt is cgiied a Monostable because its output is stable only inone logic state; thatis, when itis
trsggered!‘nts output G goes into an unstable state of logic 1 for a detarmined period and then
returns o its stable logic 0 state. Monostable ICs typicaily have complementary outputs Q and Q*.

|
;ﬁ
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Figure 4.7 Experiment 4.1 Schematic.

PROCEDURE

STEP 1 Wire the 74121 circuit as shown in the Schematic. The pertod for the monostable
pulse in miliiseconds is 0.7 * R{Kohms) * C{microfarads), Using a 22-Kohm resistor, a capacitor
batween 0.1 uF and 4.7 uF vields a visible flash on the LED. The 74121 is not made in an LS
varsion; however, there is sufficient power to support the circuit using the regular TTL 1C.

STEP 2 Insert the probe from pin 3 into the ground {0 V) rail while observing the LED.
Because the unconnected pin 3 floats to a logic 1 before grounding, inserting the probe into the
0-V rail creates a negative edge, which triggers the monostable. You should have observed the

LED flash.

STEP 3 Now remove the probe from the 0-V rail. Did the LED flash? Probably. The puise
should be a positive edge as pin 3 floats from 0 to +5 V, and therefore should not trigger the
monostable. However, the mechanical bounce as the wire was withdrawn caused a triggering

negative edge.

STEP 4 Rather than inserting the pin 3 probe into the 0-V rail, just fouch it {0 one of the 0~V
rali sockets. Fvery time you make contact the LED should flash. Sometimes when you break
contact it may not; this will ocour whenever the bounce is shorter than the monostable period.

STEP 5 Successivaly insert the probe into the cable sockets labeled C3, C11,..., C43.In
each case you should observe that the LED appears to remain on. This indicates constant activity
on the address bus.

STEP 6 Probe the IN" and QUT" cable sockets. Remember that the Timex/Sinclair uses
{/0 devices and therefore these signais are also active.

STEP 7 Leave the monostabie circuit wired for Experiment 4.2.
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EXPERIMENT 4.2

DEVICE SELECT PULSES

COMPONENTS 1 * 740802 Quad Two-Input NOR Gate
1 * 741832 Quad Two-Input OR Gate
From Experiment 4.7:
1* 74121 Monostable
1* 22-Kohm resistor
1% 1.0-uF capactor
17 Lamp Monitor

DISCUSSION  in this experiment we shall examine the uniqueness of a Device Select Pulse. We
saw in Experiment 4.1 that the device decoder has constant activity on its channsl outputs and
that the control signals are also very active. Actually, all we could verify is that pulses onthese
lines cccur at least once every 1510 30 milliseconds, otherwise we would have observed the LED
flicker. To determine whether a channel pulse from the deceder and one of the control pulses (IN”
or QUT™) ocour simultaneously, we will have to gatethe two signals and examine the output ofthe
gate. This output signat will be a Davice Select Puise. We can create a DSP by programming the
BASIC USR function and observe the result as a flash on the LED.

PROCEDURE

STEF 1 If you have not already done so, wire the 74121 circuit from Experiment 4.1
STEP 2 Mount a 741802 on the breadboard, and connect pint4to+5Vandpin 7100V,

STEP 3 Complete the NOR connections to the cable pins of OUT* and C3* and o the

Monostable as shown in Figure 4.8. The output at pin 4 is the DSP OUT C3. The output at pin 6
after inversion is QUT C3*,

STEP 4 Load the fellowing BASIC program:

10 REM 1234587890 (for B&W modeis)
10 CLEAR 32129 {for Color models)
20 LET L = USR 16514 (for B&W models}
20 LET L = USR 32130 {for Color modets)

L™ s S L]
OUT* 8 |32
c3* T r 4 2)32 Jo— 74121/ pin 3

Figure 48 DSP “OUT C3™"
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STEP 5 Enter the following machine language subroutine:

DECIMAL  INSTRUCTION

ADDRESS CODE MNEMONIC
B&W / Color
18514/32130 211 QUT (N),A
16515/ 32131 3 (N)
18516/32132 201 RET

by ENTERIng sach of the foliowing dirsct POKE commands:

POKE 16514,211 (B&W;}
POKE 16516,3

POKE 16516,201

POKE 32130,211 {Color}
POKE 32131,3

POKE 32132,201

STEP 6 Observe the LED as you press RUN and ENTER. You should see the LED flash.
Repeat a few times.

STEP 7 Now change the device code in the subroutine to 3 - 84 = 87 by ENTERIng:

POKE 16515,67 (B&W)
POKE 32131,67 (Color)

RUN the program again. Did you see the LED flash? You shouid have because C3 is relatively
decoded with a modulus of 64.

STEP 8 Repeat Step 7 only change the device code to 3 + 64 + 64 = 131.

STEFP 9 Ropeat Step 7 once more, thistime using 3 + 64 4 64 + 64 = 195 The LED should
not have flashed because the I/ 0 interface decoder does not decode addresses greater than
181 where both A6 and A7 are logic 1s.

STEP 10 Mount a 74L832 on the breadboard next to the NOR gate IC. Connect the power
pins: +5V at pin 14 and O V at pin 7. Wire the OR and {rewire) the NOR gates according to the
schematic shown in Figura 4.8.

STEP 11 Connect pin 1 of the NOR gate {74L.802), CUT 3, to the Menostable probe, pin 3of
the 74121. ENTER the following commands:

POKE 16515,3 (B&W)
POKE 32131,3 (Color)
and RUN.,

You should observe the LED flash for the absoiute Device Select Puise OUT 3. Move the
Monostable probe to NOR gate pin 1, QUT 67, and RUN. No flash shouid be cbserved.
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Figure 4.9 Absolute Decoding of Channel 3.

STEP 12 Verify the following Pulse Table by changing device codes in the subroutine and
aiternately probing pins 1 and 4 of the NOR gates.

DEVICE CODES  NOR GATE QUTPUTS

<16515/32131> Pint Pin 4
3 PULSE None

87 None PULSE
131 Nene None

STEP 13 Exchange the wire connections at A7 and A of the cable connactor, What DSPs
are now available at NOR outputs 1 and 4?7 Your answer should be OUT 3 and OUT 131
respectively. Can you make another Pulse Tabie? These iast four steps illustrate absolute
decoding. In all subsequent experiments, we shall confine our device codes to the six codes
below address 64 and thereby avoid port conflict due to the raiative decoding of the | /O Interface
circuit. If you need more than six port addresses, then by proper absolute decoding as in this
experiment, you can have up to 18 availabie device codes from the |/0 Interface.

EXPERIMENT 4.3
DEVICE SELECT PULSES FOR DIGITAL CONTROL

COMPONENTS 1 *74LS74 Dual D latch

1% 741532 Quad Two-input OR gate
1 " Lamp monitor

DISCUSSION  Although most of our interost in intertacing is generally related to data
acquisition, the DSP can also function as a contraol pulse for some external device. Even though
the instryctions iN A (N) and QUT (N).Ainvolve transfer of a data byte between a port and the
Accumulator, we may choose to igniore the data byte and rely only on the unigueness of the DSP

Input and Cutput Ports

to perform some operation. The DSP can be used to activate some digital devic_e suchas arelay
to turn on or turn off a high voltage lamp or motor or any other ON/OFF device.

PROCEDURE

STEP 1 We canillustrate any ON/OFF device by using a D latch having both PBese} and
Clear control inputs, such as the 741874 1C. Wire the circuit as shown in the schematic, Figure
410.

STEP 2 load the following BASIC program:

10 REM 1234587890 {for B&W models
10 CLEAR 32129 {for Color models
20 LET L = USR 16514 {for B&W models
20 LET L = USR 32130 {for Color models
30 PRINT “OFF” ;

40 PAUSE 33333

50 LET L = USR 16520
50 LET L = USR 32136
60 PRINT “ON 7 ;

70 PAUSE 33333

80 GOTO 20

i

{for B&W maodels)
{for Color models)

470

S 5
+BY it Q——@—*\MN—-—-— +5V

LED

Figure 410 Experiment 4.3 Schematic.
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STERP 3 load the following subroutine:

DECIMAL  INSTRUCTION

ADDRESS CODE MNEMONIC
B&W / Color
16514 /32130 219 IN A(N)
168515/32131 3 (N}
16516/32132 201 RET
16520/32138 21 OUT (N),A
16521/32137 11 (N)
16522732138 2 RET

by direct POKEs as done previously. Note the memory gap from 16517/32133 10 16519/32135.
STEP 4 When you apply power to the breadboard the LED may or may not turn on. RUN your
program. Press any key (except BREAK) to change the state of the 741.574 output to the LED.
Notg that both IN" and OUT* can be used as output control pulses (DSPs) to operate the ON/OFF
device. A TTL level to high voltage solid state relay device will be discussed in Chapter 6.

STEP 5 Modify the input subroutine with the following instructions:

DECIMAL  INSTRUCTION

ADDRESS CODE MNEMONIC
B&W / Color
168516/32132 79 LD CA
16517/32133 6 LD BN
16518/32134 0] N
16519/32135 201 RET

by direct POKEs,
STEP & Add the following line to your BASIC program:

35 PRINT L

STEP 7 RUN the revised program. The value of L is the value input into the Accumulator,
What consistent value is printed after each OFF? it should be 255. Can youexpiain? Your answer
should be that because there is no data at port 3 the value received by the compuster is the same
as unconnected TTL inputs or all logic 1s, hence the decimal value of 255,
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EXPERIMENT 4.4
INPUT PORTS

COMPONENTS 1 * Eight-switch DIP and 16-pin Wirewrap socket
1 * 74L502 Quad Two-input NOR Gate
1 * 7418373 Three-state Qctal Laich
8 * 3.3-Kohm resistors

DISCUSSION We have already seen that an input port must be connected to the Data Bus
through three-state buffers. We alse noted that it might be desirable that tha data from the input
port be latched sothat it is stable when the computer addresses the port. Although there are many
TTL ICs that can be used to build an input port, the 74LS373 s a particulariy versatile chaice. Itis
a 20-pin 1C composed of eight individual data latches with three-state outputs sharing an active
high gate latch enable control, EN, and an active low three-state output control, OC*, The truth
table is;

QC* EN D Q
0 0 X Qo
0 1 o ¢
0 1 1 1
1 X X Z

inthe table, X indicates a “don’t carg” or irrelevant state, Z represents the high impedance state,
and QO corresponds to the previous value of Q latched before the gate enable control was
disabled.

In Experiment 4.5, a second 74L8373 wili be implemented as an output port and used with the
input port constructed in this experiment. We shall use switches as the data source and therefore
do not require the latching capability of the IC. As shown in the schematic, Figure 4.11, the gate
enable for latch control is permanently activated by connecting pin 11 to +5 V.

PROCEDURE

STEP 1 Tofit an output port on the breadboard in addition to the input port, the components
must be placed carefully. Place the first cable socket at the far end of the breadboard. Working
towards the other end, ieave one row spacing between components: mount the 741502 1C, the
secend cable socket, the 74LS373, and the 16-pin wirewrap sccket with the DIP switches
plugged into the wirewrap socket,

STEP 2 Bend the leads of the eight 3.3-Kohm resistors perpendicular to the resistor body
right next 1o the ends of the resistor body. Insert the resistors between the +5-V power rail and the
DIP switch socket pins on the back side of the breadboard, This wifl keep the resistors out of the
way of the rest of the wires. Run small jumpers from the front side of the DIP switch socket pinsto
the (-V rail at the forward edge of the breadboard.

STEP 3 Run =45V and 0V to pins 14 and 7 of the 74L.802, and pins 20 and 10 of the
74L8373, respectively. Complete wiring the rest of the circuit shown in the Schematic.
Remember to connect pin 11 of the 74L8373 tc +5 V and pin 11 of the 74L80210 0 V.
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+ 5V ———8
3.3K ; % L 200 |10
each 1 7
- 3
‘ 4
7 ‘373
-,
- 8
1
A 3 D Q
Lo~ 14
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! ! EN OC*
33K 2 5 % w
each
\"
+5 + 5V

2 DO
> D1
6 D2
9 D3
12 o4
15 o5
16 o6
19 o7

Figure 4.11  Experiment 4.4 Schematic.

STEFP 4 load the foliowing BASIC program:

10
10
20
20
30
40
&0

STEP 5. Using direct POKE commands, enter the following machine language subroutine:

REM 1234567890
CLEAR 32129

LET L = USR 16514
LET L = USR 32130
PRINT L

PAUSE 33333

GOTO 20

DECIMAL
ADDRESS CODE

B&W / Color

16514/32130 219
16515/3213% 3
16516/32132 8
16517 /32133 0
16518/32134 79
18518/32135 201

for B&W models
for Celor models

( )
( )
(for B&W modeis)
{tor Cotar models)

INSTRUCTION
MNEMONIC

IN A(N)
(N}

LD BN
N

LD CA
RET

e |
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STEP € Set ail switches in the same position on the DIP switch, RUN the program. What
value was printed on the screen? It should have been either 0 or 255

STEP 7 Set all switches in their opposite positions. Press any key (except BREAK) to get
past line 40. If 0 was printed in Step 6, then you should have 255 printed on the screen now or vice
vErsa,

STEP 8 You can use this input port as an eight-bit binary-to-decimal converter. Try various
switch settings remembering to press any key 1o continue.

STEP 9 Save this circuit for Experiment 4.5,

EXPERIMENT 4.5

OUTPUT PCORTS

COMPONENTS 1 * 74L8373 Three-state Qctal Lalch
8 " LED type MV-50 or T-3/4
1 *16-pin wirewrap socket
8 * 470-chm resistors
1" 74L802 Quad Two-input NOR Gate {from Experiment 4.4)

UISCUSSION  Refer to Discussion in Experiment 4.4 if you are not familiar with the 7418373
Getal Latch. We have seen that an Gutput port is a set of latches activated by an Output Device
Select Pulse. We shall use the 7408373 as the eight latches needed o receive a data byte output
by the computer. In this case, we do not need the three-state capability of the 74L.8373 because
the latch outputs will be used to drive light-emitting diodes. The schematic for the output portis
givenin Figure 4.12. Becausethe three-state output controt at pin 1 s active low, itis permanently
enabled by connecting it to the 0-V rait. The Device Select Pulse for the Gate Enable is made with
one NOR gate.

PROCEDURE

STEP 1 The LEDs specitied in the Components list are to be inserted directly into opposite
pins of a wirewrap socket such that the lefimost LED connects between pins 1 and 16, the
rightmost LED connects bstween pins 8 and 9, etc. The diameters of the plastic case {bubblg) for
the LEDs specified are less than 0.10 inch in order to fit eight of them side by side without
crowding. All LED cathodes should be on one side (pins 1-8). The surest way of determining
which lead of the LED is the cathode and which is the anode is to test each one. Inthe space
availabie on your breadboard, set up the circuit shown in Figura 4.13. Insert each LED between
points A and C, if it lights up then the lead at Cis the cathode. If the LED does not light, swap leads.
H it still deesn't light and you know the rest of your circuit works, then it is defective. Test all eight
LEDs as you insert thern into the wirewrap socket.

STEP 2 Mount the LED wirewrap socket on the extrema end of your breadhoard. There
should be enough room left to mount the 7418373 between the LED socket and the DIP switch
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Figure 412  Experiment 4.5 Schematic.
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Figure 4.13 LED Test Circuit.

socket of the input port. insert the eight 470-ohm resistors between the rear edge +5-V power rail
and the LED socket pins 9-16 as was done with the [)IP switch resistors in Experiment 4.4,

STEP 3‘ Complete wiring the circuit for the Qutput Port according to the Schematic, Figure
4‘.1 2. As with }he switches on the Input Port, all connections to the LEDs are made on the back
side of the wirewrap socket except the short ground (0 V) jumpers to the cathodes.

STEP 4 Enter the following BASIC program:

10 REM 1234567890 (for B&W models)
10 CLEAR 32129 (for Color models)

Input and Output Ports

20 INPUT I

30 POKE 16523,1 (for B&W models)
30 POKE 32139,1 tfor Color models)
40 PRINT I; ¢«

50 LET L = USR 16514 (for B&W maodels)
50 LET L = USR 32130 {for Color modets)
60 GOTO 20

STEP 5 Load the following machine language subroutine using direct POKESs;

DECIMAL  INSTRUCTION

ADDRESS cobL MNEMONIC
BA&W / Color
16514/32130 58 LD AINN)
16515/ 32131 139 (Lo N}
16516/ 64 {(Hi N}

/32132 125 {Hi N}

16517/32133 211 QUT INJLA
16518/32134 3 (N}
16519/32135 201 RET

STFP 8 Totransfer a byte fromthe BASIC program to the machine language subroutine, we
use memory location 16523/32130 as a storage register; in the B&W program, this is the last
location inthe REM statement. Line 30 POKEs the value of the byte which isinput as the variable |
into this storage register. The first instruction in the machine language subroutine then "peeks”
the same memory location where the two-byte operand of the instruction provides the address:
139 + 64*256 = 16523 for B&W models; and 139 + 125* 265 = 32138 for Color modeis. RUN
the BASIC program and INPUT any number between 0 and 255. The LEDs should give the binary
aquivalent of the decimal value. Thus a value of 170 will give the binary value of 10101010 where
the ts will be lighted LEDs.

STEP 7 We are now ready to combine the input port with the output port. Enter the following
BASIC program: .

10 REM 1234567890 (for B&W modeis)
10 CLEAR 32129 (for Cotor models}
20 LET L = USR 16514 (for B&W models)
20 LET L = USR 32130 {for Color modeis)
30 PRINT L; «

40 PAUSE 33333

50 GOTO 20
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STEP 8 Using direct POKESs, icad the following machine language subroutine which reads
the value of the switches of the input port, writes the value to the output porl, and alsc returns the
value to the BASIC program as the variable L

DECIMAL  INSTRUCTION

ADDRESS CODE MNEMONIC
B&W / Color
16514/32130 219 IN AN}
18515/ 32131 3 (N}
165616 /32132 211 QUT {N),A
16517 /32133 3 (N)
16518732134 6 LD BN
16519/32135 0 N
16520/ 32136 75 LD CA
16821 /32137 201 RET

STEP 9 RUN the BASIC pragram. The LEDs should display the switch setting, and the
decimal number shouid be printed on the screen. Select a different switch selting, and press any
key {except BREAK) io repeat the loop.

SUMMARY  Lamps are generic output ports, and switches are generic input ports. Any other
digital data sink (ouiput) or source (input) can be emulated by lamps and switches respectively

EXPERIMENT 4.6
PROGRAMMABLE INPUT/OUTPUT PORTS

COMPONENTS 1 * 741520 Gual Four-lnput NAND Gate
1" 8255 Programmable Peripheral Interface
8 Logic switches (from Expsriment 4.4}
8 * Lamp monitors {from Experiment 4.5)

DISCUSSION The 8255 Programmable Peripheral interface (PPi) is one of a series of
programmable very large scale integrated (VLSI) circuits designed to operate with a micro-
processor. The PPl consists of three 1/ 0 ports (designated A, B, and C) controlled by a Control
Quitput Part. It is programmabie in the sense that a data byte, cailed a control word, output to the
Control Port from the microprocsessor, is used to configure each of the | /O ports as elther an input
or an oulput port. Each 1/0 port is composed of eight data latches having three-state outputs.
Ports A and B always function as gight-bit ports. Port C functions as two four-bit ports {designated
C Upper and C Lower) or as ingividua! control bits in conjunction with certain programmed
configurations of Ports A and B.

The PPlts a 40-pin DIP. Thirty-two pins are used in groups of eight for Ports A, B, and G, and for
the Data Bus. Of the remaining eight, two pins connact to +5 V and ground (0 V), and one pin,
RESET, when in the logic 1 state configures all three 1/0 ports as latched output ports. The last
five pins are used for device setection. These include RD* {connectedto IN"), WR* {connected to
OUT*"). a1 and a0 which connect to two address lines of the Address Bus (not necessarily
Address Bus lines A1 and AQ as we shall see below), and C8* (Chip Select) which for
Accumulator I/ O is used to enabie the PPI with a decoded pulse from the other six Low Address

input and Qutput Ports
Bus lines. There are four distinct devices in the PPI; namely, the Controf Port and ports A, B, and C.

Two address bits must be used in order to distinguish the four ports. The truth table for device
selection is;

C8" a0 al PORT SELECTED

0 G 0 A

0 0 1 B

0 1 0 C

0 1 H Control

1 X X Three-State

The PPl can operate in three distinct modes, dasignated Modes 0, 1, and 2. in Mode 0, each
1/0 port can be either a latched output port or an unlatched input port. In Mode 1, Ports Aand B
may be either tatched output ports (as in Mode 0} or latched input poris. As we noted in the
chapter text, a latched input port requires additional control {handshaking) bits: one bit called
STroBe to cause the gating of the latch of an input port; another called Input Buffer Fulltoindicate
that data has been latched info the input port; a third bit called Output Buffer Fuli to latch the output
port; and a fourth bit called ACKnowledge to enabie the three-state outputs of an output port.
These additional bits are assigned to certain bits of Port C when either Port Aor B is configured as
a latched input port in Mode 1 or 2, Table 4.2 summarizes the effact of the three modes on the
three poris. In Mode 2, Port A can be configured as a bidirectional (that is, both input AND ocutput)
port. We shall not have occasion to investigate Mode 2 operaticn and wili leave discussion of its
cperation for more advanced texts.

TABLE 4.2 PPl MODES

PORT A PORT B PORT C
MORE O Latched Qutput Latched Qutput Latched Output
OR OR CR

Unlatched Input  Unlatched input  Unlatched inoia

MODE1  latched Output  Latched Output PC7OBFYALI/O
OR CR PCEACK (ARI/O
Latched input Latched Input PCHIBF(AY/O

PCASTRYAN/O
PCIINTR*(A)
PC2:3TB*(B}ACK*(R)
PC1IBF(BLOBF (B)
PCOINTR*(B}

MODE 2 Latched Qutput same as PCT:same as Mode 1
AND Mode 0 OR PC6: "
Latched Input Mode 1 PCh: ”
PG4, "
PC3: "
PC2:same as Mode 0/ 1
PC1:
PCO: "
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The control word data byte output to the Contral Port of the PPI performs two functions. If the
most significant bit of the control word, D7, is a logic 1, the control word is used to program the
maode of the PPl and configure each /0 port as either an input or output port. The bitwise
structure of the control word for mode format {7 = 1) takes the form:;

D7 ]3] D5 D4 D3 D2 D1 Do
Mode ACU  PortA  PortCU  Mode BGL PortB  Port CL
1 0 G 1=} 1= 0 1=] 1 =]
0 1 0=0 0=0 1 0=0 0=0
1 X

It DY of the control word s a logic 0, individual bits of Port C can be Set {toalogic1)orReset{toa

logic 0). This is of particular importance for Modes 1 and 2. The control ward then takes the bit
format;

D7 D6 D5 D4 D3 Dz D1 DO
---NOQT USED--- Port C Bit Select 1=8ET
0 X X X (Bit value 0-7) 0=RESET

PROCEDURE

STEP 1 Mount the DIP switches and resistors on the end of the breadboard, then mount the
LED socket and resistors next to the DIP switches as In previcus experimants.

STEP 2 Mount the two I1Cs on the breadboard with the 74L320 located between the two
cable sockets, Wire the circuit as shown inthe Schematic, Figure 4.14. According to the decoding
scheme used, verify that C3 = Port A, C11 = Port B, C19 = Port C, and C27 = Control Port.

STEP 3 ENTER the following BASIC program;

10 REM 1234567890

10 CLEAR 32129

20 LET L = USR 16514
30 LET L USR 165618
20 LET L USR 32130
30 LET L = USR 32134
40 PAUSE 33333

50 GOTO 30

{for B&W models)
{for Golor modeis}
{for B&W models)

{for Color models)

STEP 4 Determine the control word for formatting the PP for Mode 0 with Port A as input and
Ports B and C as outputs. You shoui¢ determine the following binary word:

D7 D6 D5 D4 D3 D2 D1 DO
1 G 0 1 G 0 0 G

which is 144 in decimal.

c3*
c11#*
C19*
car*

[orf 2]~

+ 5V

20

[nput and Cutput Ports

Figure 4,14 Experiment 4.6 Schemalic.

STEP 5 Enter the following machine language subroutine using direct POKEs:

ADDRESS

B&W / Color
16514 /32130
16515/32131
16516/32132
16517/32133

DECIMAL
CODE

INSTRUCTICN
MNEMONIC

LD AN

N

OUT {N),A
(N}

+ 5V ——l
26 |7$
27 37 ™
D7 w127 PATr3 T 8LoGic
gg = D ‘ swgr;:r:'s |
30 40 I ; :
255
D4 24 8 1 t [ J+5V 1
D3 3 5 T “:]7 |
g? a3 3 l !
0o 34 4 ! '
DO PAO[— L e o
PB?W 8LAMP |
> © MONITORS |
470
22 1 !
‘ +5V
5 21 L iy |
IN* RD* & |
36 20 | 47
QuUT* 8 WR* 19 | |
A4 g-a‘t 18 | |
A3 a0 10 : |
PBO ¥ . y
s PC7 —
= 13
17
101 '20 o2 Llos* =
o 35 15
6 RESET e
! 14
pCo b
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16518/32134 219 IN A(N)
16519/32135 3 (N}
16520/32136 211 OUT (N),A
16521/32137 11 {N)
16522 /32138 201 RET

STFP 6 RUN your BASIC program. Set the DIP switches for some value, then press any key
(except BREAK). The LEDs should light according to the switch setting. l{ they do nof, remove the
RESET line at pin 35 from Ground momentarily and then reinsert it into the 0-V rail. Continue
looping by pressing any key 1o get past the PAUSE in line 40.

SUMMARY  This cursory look at a programmable integrated circuit should serve o illustrate the
power and potential of these devices. Two points are of immediate interest to the interfacer: first,
there is a cost savings of about 33% using cne 8255 instead of three 74L83731Cs to achieve the
same purpose; and second, both physical space on a circuit board Is saved and fewer
conneciions are required using the VLSI chip.

09 O
digital conversions

Once you have constructed an input port using switches and an output port using
lamps, you have accomplished the first step in interfacing a computer to the outside
world. The most important fact to realize is that any digital input signal can be
substituted for the switches of your generic input port. Similarly, any digital output
device can be substituted for the LEDs of the generic output port. Bear in mind that
the input port still needs its three-state buffers and the output port still needsits latches,
and that both have to be selected with a unique Device Select Pulse generated from the
Device Code of the Address Bus and the proper Control Bus pulse (IN® or OUT® ).

There are many signals which are digital. Of course, these signals always
correspond to some binary condition such as On/Off, Up/ Down, True/False,
Left/Right, Over/Under, Opened/Closed, etc. It is always necessary that input
devices convert their binary conditions to the +5-V and 0-V signals to be interfaced to
the computer input port. A very common example of a digital data source s a set point
determination of temperature, pressure, extension (length), etc., where one bit of
information is all that is needed. The one-bit signal indicates, for example, that a
temperature is exceeded or not—exactly like a thermostat. With an eight-bit input
port, eight individual set points can be monitored by the computer. When the
computer reads the data bits of the input ports, it can make a decision based on the
status of each bit. If those bits are thermostat set points, then the computer can use the
individual bits of an output port to control heater relays, circulator motor switches,
indicator lights, etc. The problem then is to convert the +5 V or 0 V of the output port
bits to power levels appropriate to handle the output devices. We shall cover several
methods for doing this in this chapter and in Chapter 6.

Before discussing digital input and output further, we should note that the other
type of signals one encounters in the outside world are analog signals. These are signals
whose values vary continuously over their operating range rather than having just two
{hinary) states. For example, the thermometer is an analog device whereas the
thermostat is a digital device. Any signal that can beread witha pointer ona scaleisan
analog signal. There are hybrid integrated circuits which convert between an analog
signal and an eight {or 10 or 12} bit number proportional to the value of the analog
signal. These are called Analog-to-Digital (ADC) and Digital-to-Analog (DAC)
converters. We shall discuss analog to digital conversions in Chapter 6. In the rest of
this chapter, we shall consider the various ways that digital signals are used.
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PARALLEL-SERIAL CONVERSIONS

We have seen that data can be transmitted to an output port and received from an
input port as an eight-bit byte, or in other words, over eight parallel wires {the Data
Bus). It is also possible to transfer data over one data line ( actually two wires with one
wire serving as the electrical common potential between the transmitter and receiver}.
Instead of sampling eight lines in parallel simultaneously, the data on one wire is
sampled serially at successive times. Serial transmission has several practical
advantages over parallel transmission not the least of which is the cost of the wire when
long distances are involved. Of course, for large distances the pair of wires provided
by the telephone system is the most widely used data transmission network.

When data. is transmitted serially, there are several possible ways that the
information can be encoded. One of the oldest methods is Morse code made up of dots
and dashes. In this method, the information was transmitted as bursts of a tone with a
dash being three times longer than a dot, and periods of silence between the tone
bursts of a character (alphabetic letter, numeral, symbol, ete.) equalto the intervalof a
dot and between characters equal to a dash. The more common method since the
teletypewriter replaced the telegraph key is with the American Standard Code for
Information Interchange (ASCII) mentioned in Chapter 1. Each character is encoded
in seven bits as shown in Appendix Chart A6, In terms of TTL signals, logic 1 and 0
states correspond to +5 V and 0 V respectively. When an ASCII character is
transmitted serially, each bit lasts for the same period of time with one immediately
following after another. If we were to use the tone analogy of Morse code, then a dot
tone would be a logic I and a dot rest {of silence) would be a logic 0. The duration of
the bits is determined by the bit rate, that is the number of bits that are transmitted in 1
second. ¥or example, if the bit rate is 100 bits per second (bps) then the time duration
of each bit is 10 milliseconds. Another term you may hear applied to bit rate is Baud
rate. This term comes from the field of international radiotelegraphy which defined
the Baud rate in terms of the shortest tone bursts of Baudot code (a five-bit, 32-
character code similar to the seven-bit, 128-character ASCII code}). When all bits have
the same duration, bit rate is equivalent to Baud rate.

Before considering the various methods other than TTL signal levels used in serial
data transmission, we should first consider how the parallel data byte from the
microcomputer is converted into a serial string of bits. Within the 7400 series of ICs,
there are several types of ICs called shift registers which perform these conversions.
They are distinguished as parallel in-serial out (PISO) and serial in-parallel out
(SIPO). Examples are the eight-bit registers 7415165 and 74L.S164 respectively,
(There are also serial in-serial out and parallel in- parallel out shift registers.) The shift
registers operate as a set of (eight) cascaded data latches where the Q output of the
first latch is connected to the D input of the second latch and so forth. All latches have
their clock inputs connected in common and may also have a common clear input, One
of the first large scale integrated (LSI) circuits to be produced, which performed bath
conversions, was the Universal Asynchronous Receiver Transmitter (UART). The
UART is not a TTL IC; however, it operates between +5 V and 0 V and therefore is
TTL compatible. In addition to the input and output data lines, these circuits require
timing (clock) inputs. The UART has additional control inputs and outputs whose
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functions are more easily understood once the conventions of serial transmission have
been described.

In asynchronous serial transmission of data, only two wires are used as mentioned
above. Because the only information that can be passed is over the data line, the
receiver has no other means of synchronizing with the transmitter; that is, the receiver
cannot know beforehand when the transmitter is going to start; therefore, the
transmission is said to be asynchronous. Between the transmission of characters, the
data line is held in the logic 1 state. To synchronize the receiver with the transmitter,
the first bit transmitted is always a logic 0 “start” bit. Following the start bit, the data
bits are transmitted in order with the least significant bit sent first. Following the seven
data bits (for ASCII code), an error-checking bit called the parity bit may be
appended, finally one or two stop bits in the logic 1 state conclude the transmission of a
character. In all, a maximum of 11 bits per ASCII character are transmitted. The
timing diagram for the transmission of the ASCII character “C” (1000011) at 110 Baud
is illustrated in Figure 5.1.

The schematic and pin assignment of a UART is shown in Figure 5.2. In the
diagram, each of the small rectangles corresponds to either a data latch or a set-reset
flip-flop. The three-state buffers are self-explanatory. The frequency of the clock
signals for the receiver and the transmitter operate at 16 times the bit rate and are
usually tied to a common clock generator. Five programming bits permit formatting
for the data transmission: two bits of the data word inputs select the length of the data
word between 5 (00 at pins 37 and 38) and 8 (11 at pins 37 and 38) bits; inclusion of a
parity bit is determined by the logic state of pin 35; even or odd parity is selected by
the logic state of pin39; the number of stop bits (one or two) is determined by thelogic
state of pin 36. Three status bits from the receiver indicate the various reception errors
at pins 13, 14, and 15. We give only a brief description of the UART here in order to
familiarize you with the terms. We shall examine a newer IC, the 8251, which is more
computer compatible (i.e. programmable), in Experiment 5.6.

There are several other concepts concerning serial data transmission which we shall
enumerate here in order to complete an introduction to the topic. There are three
common transmission modes that are encountered in serial data transfer, These modes
are: (1) Simplex in which only two wires connect the terminals and the data transfer is

110 BAUD ®»»———. 9.09 msec

¢ i
t i
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1 i
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£.SB MSB
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Figure 5.1 Serial Transmission of ASCH.
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Figure 5.2 UART Block Diagram.

only in one direction, that is, one terminal is always the transmitter and the other is
always the receiver; (2) H. alf duplex in which two wires connect the terminals but data
can be alternately transferred in either direction (not at the same time! ) with each
terminal operating alternately as a receiver and a transmitter; and (3) Full duplex in
which two pairs of wires connect the terminals and allow simultaneous data transfer in
both directions. We shall see shortly that full duplex transmission is possible over one
pair of wires (telephone connection) if the bits being transmitted are tone bursts of
sufficiently separated frequencies rather than DC logic levels.

In addition to the method of transmitting data serially with TTL level signals {logic
1=+5V, logic 0 =0 V}, there are three other methods which have various advantages
relating to noise Immunity, speed, power, or convenience. The three methods are {1}
current loops, (2) RS-232¢ voltage standard, (3) and frequency shift keying (FSK).
Again, our immediate interest is to introduce the concepts rather than exhaustively
cover the topic. In the serial transmission of data via a current loop, the pair of wires
used in simplex or half duplex moderely on the existence of current flow to indicatea
logic 1 state and the absence of current flow to indicate a logic 0 state. Data can be
transmitted up to 5 miles (8 km) on a current loop. The standard for the cusrent is
either 20 mA or 60 mA, depending on the system design. The voltage applied to the
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wires is whatever it takes to provide the specified current— usually between 12 and 18
V.

We should note that the pair of transmission wires referred to in serial transmission
is either a twisted pair or coaxial cable. Both of these techniques increase noise
immunity of the transmitted signals by reducing the amount of induced pickup from
external sources.

The RS-232¢ is a voltage standard supported by the IEEE {Institute of Electrical
and Electronic Engineers). The logic levels are defined as a voltage between +5 and
+15V for the logic 0 state and a voltage between —5 and —15 V for the logic 1 state.
Data can be transmitted up to 50 ft without significant signalloss. To convert between
TTL and RS-232 signal levels, the MC1488 and MC1489 Quad Driver and Quad
Receiver integrated circuits have regular TTL inputs and outputs respectively.
Connection of these ICs to a power supply providing the RS-232 voltages (typically
+% V and —9 V) gives RS-232 level outputs ( driver) and accepts RS-232 inputs
(receiver). In addition to the voltage level specification, the arrangement for the
terminal connection is defined by the standard to cousist of a 25-pin connector with the
various signals defined as shown in Table 5.1 (not all pins defined). In many cases only
the three (°) signals are used for asynchronous serial transmission.

The third method of serial transmission is the FSK technique used primarily for
telephone transmission. There is no practical limit to the distance because the
telephone system manages the signal conditioning. The frequency range of ordinary

telephone lines lies between 300 and 3300 Hz. The logic levels are defined in terms of
tone bursts of specified frequencies. Devices used to convert a digital signal {TTL,
current, or RS-232 standard) to the proper transmission frequency (tone) are called
Modulators, those devices which convert a received frequency back to a digital signal
are known as Demodulators. The combined device used for two way communication
of serial data is referred to as a Modem ( MOdulator- DEModulator). For full duplex

TABLE 5.1 RS-232 PIN ASSIGNMENT

PIN NUMBER FUNCTION

1 Frame Ground

2" Serial Data Qut

3+ Serial Data In

4 Request to Send Flag

5 Clear to Send Flag

) Data Set Ready Fiag

™ Data Signal Common

8 Carrier Detect Signal

9 +12-V Power
10 ~—12-V Power
15 Synchronous Transmit Clock Signal
17 Synchronous Recsive Ciock Signal
20 Data Terminal Ready Fiag
22 Ring Indicator Signal

24 External Transmit Clock

103



104  Chapler 6

Pperation with a modem, the receive and transmit frequencies are different as shown
in the following table:

Frequencies (Hz) for Full Dupfex Transmission
Logic 1 Logic 0

Send/Qriginate mode 1070 1270

Receive/Answer mode 2025 2225

This requires that one terminal operate in the Originate mode and the other operate in
the zi&nswer mode. Because this is full duplex operation, both terminals can send and
receive, E‘)ut agreement must be established between them. Thus terminal #1 operating
in th'e Originate mode will send ( modulate} its data at the lower frequency band and
receive data from terminal #2 ( demodulate) the higher frequency band. Terminal #2
will m‘odulate its transmission on the higher frequency band and demodulate its
reception from the lower frequencies. It might be noted that the less expensive
moderns are equipped for receive mode only

SERIAL TIMING AND FREQUENCY CONVERSIONS

We have considered the transmission of data encoded into serial strings of bits but
there is still another way of transmitting serial information. Whereas the serial
communication described in the preceding section concerned bit rates with each bit in
t_he string having an equal duration, it is also possible to transmit data on a single data
line (really a twisted pair of wires) where the length of the time the data bit is, say, in
the logic 1 state proportional to the value of the data. This type of digital conversio;l is
?he i;oftware equivalent of the gated digital counter or frequency converter examined
in Experiment 2.5. Recall that two signals can be gated and fed to the input of a
counter. If one of the signals is a monostable pulse of known duration and the other is
an astable pulse of unknown frequency then we can determine the frequency of the
astable based on the number of pulses in the known time of the gating monostable
pulse. On the other hand, if the astable frequency is known, then the duration of the
monostable pulse can be determined from the count.

A similar experiment can be performed with a computer by using the computer in
place of the digital counter. For example, a computer could measure the duration of a
mo‘nostal‘)ie pulse by triggering the monostable, such as the 555 timer or one in the 7400
series, using an output Device Select Pulse and then immediately start to read the logic
state of the monostable through a one-bit input port. The computer program would
consist of reading the port and incrementing an eight- (or 16-) bit counter if the logic
level were 1, and then staying in a program loop (i.e., jumping back to read the input
data bit and increment the count) until the monostable pulse fell back to alogic0. If
either the resistor or the capacitor in the RC tirning circuit of the monostable were a
transducer whose value depended on some physical property such as temperature or
pressure, then the count stored by the computer would be proportional to the value of
the physical property. The advantage of this type of conversion is its simnplicity in
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hardware. [ts disadvantages are the need for more sophisticated software and the long
conversion times (typically several milliseconds). If the physical property changes
more rapidly than the conversion time, the method isimpractical. These problems are
typical of the trade-offs between hardware and software always faced by the
interfacer in designing and developing a measurement device.

The same interfacing technique can be used to measure the frequency of anastable
(that is, of a square wave generator) again using the computer as the counter. This
procedure requires that the program be written to examine the one-bit input port
repeatedly until it observes the edge ( positive or negative) of a square wavepulse.Ina
manner similar to the preceding description the computer then stays in a counting loop
until it finds the subsequent opposite edge. By sampling the duration of the high pulse
of the square wave and then sampling the duration of the low pulse of the square wave,
the two counts can be converted to times by determining how long the program loop
takes per count. Once the times are caleulated, the frequency of the square wave is
obtained as the reciprocal of the period. One interesting application of this method is
the measurement of an unknown capacitance by insertion into the RC circuit of a 555
Timer astable circuit. The disadvantage of the method is the relative slowness of the
computer operating in the microseconds per count range compared to thatof a digital
counter which can operate in the tens of nanosecond range.

We can conclude this section on timing and frequency conversions of a digital signal
by peinting out that the gated counter could be directly interfaced to a computer
rather than to seven-segment displays. If the counter consisted of two cascaded binary
counters (74L893s) then the computer could read the outputs of the pair as an eight-bit
input port. Each additional cascaded pair of counters would form an additional input
port. We shall defer further discussion of inputing measurement data until Chapter 6
when we consider analog-to-digital conversions.

DIGITAL-TO-ANALOG CONVERSION

The microcomputer is often required to deliver analog information to the outside
world for the purpose of providing data, for example, to deflect the pointer of a meter
or the pen of a recorder, or for providing proportional control of instruments such as
turning on a heater or opening a valve to some partial setting. To do so requires
conversion of information from digital form into analog form. Again use canbe made
of readily available integrated circuits such as the type ADS58 Digital-to-Analog
Converter (Analog Devices) shown in Figure 3.3

The conversion process for all intents and purposes can be regarded as a precision
voltage divider. Actually, the DAC first produces a current proportional to the digital
value using an internal precision resistor network {called a R-2R ladder), this signal is
then fed to an internal current-to-voltage amplifier to obtain a proportional voltage.
Many other DAC ICs produce a current output and require an additional current-to-
voltage (operational) amplifier. By having a built-in amplifier, the AD358 is
particularly convenient to use. The supply voltage to the DAC must be larger than the
maximum analog output voltage to allow reaching the full scale output voltage of the
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Figure 53 AD558 Pin Contiguration,

0V to either 2.55 v or 10.0 V. Each bit of the digital data is converted to a signal
proportional to its binary weight: from the least significant bit (DO) with a weight of
one unit to the mogt significant bit (D7) with a weight of 128 units. For each | VofVv |
the LSB has a unit weight of 0.0039 v (1/255) and an MSB weight of 128 times the unit
Weight, or 0.0039 * 128 == 0502 V' Thus the DAC adds to the analog output voltage a

Bit weight(v): 128 064 032 018 0.08 0.04 002 001

Data bit position: D7 D6 D5 g D3 D2 D1 po

Binary data (1 00} 0 1 1 1 i 0 1 1
Analog ocutput, v = 064 +032+0.16 + 0,08 +0.02+001 =123y

The full scale voltage (all eight digital 1s) is 2.55 V. 1¢ higher voltage outputs are
required, then it ig passible for the supply voltage to be operated from g 12-V power
supply to output an analog voltage range from 0 to 10.0 V (i.e. the binary weight of the
least bit [unit weight] is 0.039 V). Can vou show that the analog voltage on the 10.V
range for the digital decimal value of 123 would be 4.804 v? Again we stress that for
the low cost interface a single power supply is a prime requirement, so reference
voltages less than +5 v will be used in our experiments, These can he easily obtained

et
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(CS*®) input. When these two active low pulses are produced by the machine language
program in the microcomputer then the eight-bit digital data is latched into the input
buffer of the DAC and converted to an analog voltage at the output pin for use by

the transition from its enabled to its disabled state. This means that as longas thelatch
Is enabled, the analog output reflects the data at the D inputs.

The supply voltage, V . can be from +5 V to +13 V. The reference voltage, V__ |
for the analog output can be wired for either a 0 to 2,55V range ora0 to +10-V range.
The data inputs are TTL compatible irrespective of the supply (or reference) voltage.
Besides connections to the two control pins, the supply voltage, and the ground pins
(one for the digital and one for the analog signals), other connections to the DAC
include the Data Bus connections of DO to D7, the analog signal output pin, and two
analog feedback resistor input pins. Connections to these three pins will be described
in the experiments. Because the time required to make a conversion is 1.0 micro-

STEPPER MOTOR CONTROL

A stepper motor is g digital device which can be actuated by the parallel bits of an
output port. Permanent magnet (PM) stepper motors are the simplest to understand
and use with a microcomputer, We will consider only PM steppers in this survey. A PM
stepper motor consists of a cylindrical permanent magnet rotor attached to the
rotation shaft. The rotor body is magnetized around its circumference with alternating
strips of north and south poles lying along the length of the cylinder. The number of
strip poles is one of the determining factors in how many degrees of rotation the rotor
turns for each step. A view of the rotor is shown in Figure 54. The stator, which is
positioned around the circamference of the rotor, consists of two coils of wire housed
in a metal sheath or case. In the less expensive steppers, known as “tin can” stepper
motors, the stator cases are made in two interlocking sections of pressed sheet metal.
When assembled, the case forms a “donut” with solid walls for its two sides and outer

ALTERNATE
PERMANENT
MAGNETIC
POLES

Figure 5.4 Stepper Pis Rotor.,

e ]
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perimeter and sets of alternating teeth around its inner perimeter. Four wires extend
from the case corresponding to the two ends of the two coils wound inside the stator
case. The number of coils determines the number of phases of the motor.

Each alternate pair of teethin the stator case can be imagined as a flattened nail bent
into a square ring with its ends situated beside each other. If you were to wrap a coil of
wire through the square and pass an electric current through the coil then you would
have an electromagnet with one end of the “nail” as north pole and the other end as
south pole. If a large set of these “nails” were laid side by side in a eircle and the wire
coil was wrapped inside them, you would have a stator case where every other tooth
was a north pole and the other alternating set were south poles. If the PM rotor were
arbitrarily positioned inside the stator, it would rotate to align its north poles with the
south pole teeth, and vice versa. The number of teeth that form the inside perimeter of
the stator case is the other determining factor in how many degrees of rotation {step
size} will be involved in a single step. An exploded view of a tin can stepper is shown in
Figure 5.5. The stepper illustrated has a stack of two stator cases positioned side by
side around the rotor. This type of stepper is a four-phase motor.

The teeth of the one stator case are positioned around the rotor to lie halfway
between the positions of the teeth of the other stator. If we assume thatthere are 24 (12
pairs) teeth on each stator and 12 bar magnets around the circumference of the rotor,
then the smallest step will be 360 degrees/48 ="17.5 degrees. For example, suppose
current is run through one of the coils in each stator case so that the 12 electromagnet
poles of each stator are as shown in the following chart.

Roter front: S n s n 8 n
Stator #1: NS N & N 8 N
Stator #2: N 8 N 8 N 8
Rotor rear: S n 5 n S n

Now suppose we run the current in stator #2 coil in the opposite direction, that is swap
the ends of the coil at the voltage terminals. The poles in stator #2 would be reversed,

and the rotor would turn to line up with the new positions, as shown in the following
chart,

Rotor front: n S n 8 n s
Stator #1; N &% N 8 N $ N
Stator #2: SN S N S N
Rotor rear: n 5 n 5 n s

Careful observation of the difference between the first and second charts shows that
the rotor moved one-quarter of the distance between two of the like poles of stator #1.
Because there are 12 like poles wrapped around the circamference, then the rotor
moved 1/4 of 1/12 or 1/48 of a full turn of 360 degrees.

Rather than disconnecting the coil leads to run current in the opposite direction, the
two coils in each stator case are wired for the current to flow in opposite directions.

Digital Conversions

HOUSING

STATOR OILS STATOR COILS
#1 #2

Figure 5.5 Disassembled Tin Can Stepper.

However, current only ever flows in one coil of each stator ata time; otfh(;lrwzs;aI tl;saé
electromagnetic effects would cancel each other out. If we label e‘ach of the ::xt.) Sf ina
stator as A and B, then we have to know the sequence oﬁf aliowm.g curren od o
through the four coils 14, 1B, 2A, and 2B with the restrz_ctlon that 1f ElA is tt(lirne : 1;
then 1B must be turned off, ete. This is obviously a'bmary condition, ;zn tWe \;’;e
represent an “on” with a logic 1 and an“off” with a logic 0. The sequence for step

rotation is shown in the following table.

Direction: CLOCKWISE COUNTERCLOCKWISE
Coils: 1A 2A 1B 2B 1A 2A 1B 2B
Start position: 0 1 1 0 0 1 1 0
Ist Step: 1 1 0 0 G o0 1 1
2nd Step: 1 0 0 1 1 0 0 1
3rd Step: 0 0 1 1 1 1 0 0
4th Step: 0 1 1 0 0 1 1 0

By the 4th step we have returned to the same binary pattern as the start position sz
subsequent steps just repeat the pattern. If youlook closely &%tthe: patt'ern sequen}fe, y(;] )
will see that the four bits are shifted to theleft for the clockwise dn‘ec'tic')n andtot en}% '
for counterclockwise. Whena bitisshifted off one end of the patternitis bmughtbat(:i in
on the other end. Because our computer has an eight-bit data output all we.hawzre todois
write the pattern of four bits twice. For example, the following machine angtuggtg
routine is an endless loop which would continuously run a stepper motor connecte
output port #3 which latches data bus lines D7-D4.

START LD AN Stepper byte is
51 ‘binary 00110011,

LOCP OUT {N),A :Activate stepper through
3 :output port device code 3.

RAL ‘Shift the bits for clockwise
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(ory  RAR (for counterclockwise).
CALL DELAY :Atime delay subroutine
Lo Address ‘because the stepper cannot
Hi Address rrespond fast enough,
JR :Stay in endless loop
LOOP+7 248 by jumping back —8to LOOP.
DELAY o :Address of DELAY subroutine.

Stepper motors are power devices capable of performing work. The current drive of
.the outputs of a TTL latch is not large enough to drive the coils of the stepper. To
interface a stepper motor, a power source of several ampsat the operating voltage of the
motor is necessary. The TTL signals can be used to control transistor switches having the
proper current rating. Transistors such asthe NPN D40K (General Electric) are capable
of handling a currentload (per coil) of 2 A at 30 V. One lead from each of the four coils i
eonnf?cted to the power supply. The other lead from each coil is connected to one side of
the NPN transistor switch (collector) with the other side of the transistor switch
{emitter) tied to the common side (ground) of the power supply. The TTL signal is
connected to the base of the transistor. When the TTL signal is a logic 1, the switch is
closed, and current from the power supply flows throughthat coil. A schematic used by
the authors with a stepper operating froma5-V power supplyand drawing (0.3 A per coil

{ 1?. ounce inch torque rating) is shown in Figure 5.6, Further discussion of transistor
drivers is in Chapter 6.

e oTmm e ——T "
o
+5V W f 1A
5 Fz—‘J’ Itatet - T
7 9 F— m= N
mmd 19 L 2
D3~ 6 o A 3 24
[ i
D2 3| 75 |15 b e T
Dt 2 16 l !_........._......._...._: o
Do EN ; ; 18
L ------- ! ' L
DEVICE Rt S
SELECT ~ppid” ! o8
PULSE . 0
_______ wd
=7
56K  D4OK 1NO14

+ POWER SUPPLY -

Figure 5.8  Stepper Motor Driver Interface.
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EXPERIMENT 5.1

POSITION DETECTION AND DISPLAY

COMPONENTS 1 * Joystick control with four 100-Kohm potentiometers or two 50-Kohm
potentiometers
1 7 556 Dual 855-type Timer
1 * 741832 Quad Two Input OR Gate
1 * 74L.8125 Bus buffer
4 * 1-Kohm resistors
2 * 0.2-uF capacitcrs
2 * 0.01-uF capacitors

DISCUSSION  In this experiment we shall examine the technigue of digital data acquisition by
timing conversion from resistance transducers. Control ofthe motion ofadotenthe video screenin
both the X and Y coordinate directions determined by the position of a joystick is an extremely
useful experiment having applications in graphics techniques and, of course, games. Althoughthe
commoniy available joysticks use potentiometers whichtend (e be highly nonlingar, the following
experiment will result in a well defined X~Y border but a somewhat guesticnable set of diagonals.
Center point of the joystick is the center of the screen,

The means of converting the position of the joystick tothe position of a dotonthevideoscreenis
accomplished in a very simple manner, As the top of the joystick control moves, the wipers onthe
potentiomaters connected 1o the base of the joystick change position and vary the resistance of
each potentiometer. As the schematic shows, each pair of potentiometers, one pair referred to as
the YY' pair and the other pair as the XX’ pair, is connegtedto the RC {timing resistorand capaci-
tor) input of one of the two 555-type timers configured as monostabies,

in this mode aach monostable puise will have a period that depends on the valueof Rand C
in its timing network. Because C is fixed at 0.2 uF, variation of R, which is dependent on joystick
position, wilt vary the time pericd. By having the microcomputer measure the time interval pro-
duced by the X pair separately from the time interval produced by the Y pair, timing counts can
be obtained which can then be plotted as X and Y valués on the video scraen.

The time interval of each timer is determined by triggering both timers simultaneously with a
device select pulse (OUT 3%) applied to the trigger inputs, pins 6 and 8, of the two timers and then
poiling the outputs of eachtimer, pins 5and 9, respectively, through a two-bitinput portto determine
the exact instants that each cutput falls back to a logic .

The microcomputer does this by inputting the state ofthe two timer outputs throughthree-state
bus buffers ofthe 74L5125. One input is gated to data bus line DO and the other todatabus line 7,
Thus by inputting the states of the data bus ines into the accumulator register A, the
microprocessor can check which timer's output fell first and note the time of the first fall while stil
maintaining a count for the second timer. By converting each time to a displacementinthe X and Y
directions, a position on the video screen can be PLOTted.

PROCEDURE

STEP 1 Inspect the four (or two) potentiometers controlled by your joystick. Opposite palrs
should be wired in parallel, as shown in the schematic. Note the 1-Kohm limiting resistors wired o
oach potentiometer and make sure that the +5 V goes 10 each pair of potentiometers separately
{don't try to save money by only using one or two 1-Kohm resistors, as the case might be}.
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STEP 2 Wiretheremainder of the circuitas shown inthe schematic, Figure 5.7, notforgetting
towire +5Vand 0 Vio all integrated circuit chips used. Apply power afier the cirouit has been

checked.

STEP 3 TheBASIC programis
subroutine called at line 30, the varia
automatically. The BASIC variabi
16561-16562/32177-32178. T

joystick you use are much different from the values stated in this experiment.
Load the BASIC program.

BASIC PROGRAM

10

20
30
40

10
30
40

50
60
70
80
90
95
100
100
110
iR20
130
140

REM 123456789 123456789 123456789 123456789 1234567890

(for B&W models)
FAST

LET L = USR 16514

LET ¢ = PEEK 16561 + 256 * PEEK 16582
* % % ok

CLEAR 32129

LET L = USR 32130

LET C = PEEK 32177 + 256 * PEEK 32178
® ok ok x

LET N = 33333

LET X = L/11.5

LET ¥ = (/20

PLOT X,Y

PAUSE N

GOTO 20

FOR M = 16514 TO 16557 (for B&W models)

FOR M = 32130 TO 32173 {for Color models)
INPUT N

POKE M,N
PRINT M; “=» .PEEK M;
NEXT M

{tor Color models)

STEP 4 Inspscticn of the machine fanguage program will show that after inputting the states
of the data iines at iocation 18524/32130, the accumulator is ANDed with the cantents of £,

Register £ holds a mask havingthe decimal

from the binary representation thereisalo

and D7, the two lines we wish to check,
Two loops are set up: the first loop waits until the

value 129, whichinbinaryis 10000001 Ascanbesesn
gic 1 state at each of the positions correspondingto DO

first timer output has falien to 0 while

incrementing the BC pair counter register each time round the loop, the second loop saves the

count of the first timer white continuing to increment the BC counter u
has fallen to 0.

Finafly on exiting from the loops a check is made on which timer outputfellfirst: the Xorthe Y. I

ntitthe second timer cutput

quite straightforward. Whenthe programrsiurns fromthe USR
ble L has the 168-bitcount of the Band C register pairreturnaed
e Chasitsvaluedetermined bythecontentsof memoryiocations
he values of the variables so formed argscaledtofit onthe video
screen, NOTE: You may have to changethese scaling factors yourselfif the potentiometers inthe
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Figure 5.7 Fxperiment 5.1 Schematic,

BCandHL
the Y timer fell first, then tha routine starting at 16547 /32163 exchangesthe contents of
before returning to the BASIC program.

i i {
{_oad the machine language routine by ENTERing RUN 100 and supplyingthe decimal values o
the machine code.
MACHINE LANGUAGE PROGRAM

DECIMAL  INSTRUCTION

ADDRESS CODE MNEMONIC COMMENT
Cofor ) .
386&5:&11 ? 323 30 21 CUT (N),A :Triggerghe monosiables
3 N} .atPort 3.
2651 2;221 212 30 f_D. EN ‘Set the mask fOt“ both
122%7/32% 33 128 N D7 aﬂg DOtologic 1.
18/32134 33 LD HE,NN ‘HL points to address at ’
e 9/32135 176 Lo N 116560 or 321 7810 tell which
1 gg;of 64 HiN dimer quit first.
Hi N .
16521 ﬁgglgg 1215 L.D BCNN Zerothe 16 bit counter
16522 /32138 ¢ m
12222?32123 218 IN A(N) ‘Flead the monostable levels
16525/ 32141 3 (N) from F’onl 3. ool A
16526/ 32142 163 AND E :Setthe Flag reg

16527 /32143 40 JR Z2,d ‘if both timed out then jump
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16528 /32144 12 d 10 18541/32157.
16529/32145 3 INC BC Ancrement the count,
16530/321486 187 CPE :Are both still high?
16531 /32147 40 JRZd Yes. Jump back to 16524/
165632 /32148 247 d 32140 and keep counting.
16533/32149 95 LD EA :No. Save a new mask
16534 /32150 119 LD {(HL)A 1o show which one quit,
18535 /32151 35 ING HIL Bava the count iow byte
16536 /32152 113 LD (HL),C a2t 16561/32177, and
16537 /32153 35 INC HL ‘the high byie at 16562/
16538 /32154 112 LD {HL)LB 32178 for BASIC program.
16539/32155 24 JRd WJump back 1o 16524/32140
16540/32158 239 d keep count of second timer,
16541 /32157 43 DEC HL :Arrive here when both timers
16542 /32158 43 DEC HL ‘have quit.
16543/32159 126 LD AHL :Get mask from 16560/32177.
16544 /32160 31 RRC ‘Did DOX) quit before D7(Y)?
16545 /32161 58 JRC/d A1t not, then skip to 16557/
16546 /32162 10 d 32183 to return to BASIC.
18547 /32163 42 LD HE(NN) 1f 50, then Load HL with X
16548/32164 177 Lo N count stored at
16549/ 64 Hi N :16561-2 or

/32165 125 Hi N :32177-8.
16550/32166 229 PUSH HL :Swap BC and HL by reversing
16551 /32167 197 PUSH BC ‘them onthe stack.
16552 /32168 225 POP HL Now HL has the Y count,
16553/32189 183 POP BC :and BC has the X count.
16554 /32179 34 LD (NN}HL ‘Save the X count
16555 /32171 177 Lo N dlow byte at 16561/32177
16556/ 64 HiN thigh byte st 16562

/32172 125 Hi N 0f 32178.
16557 /32173 201 RET :Back to BASIC.

STEP & RUNthe program. If your Timex/Sinclair responds by printing B/ (line number}, you
wili need to change the value or vaiues of the divisors in line 60 and/or 70 of your BASIC program,
because the values to be PLOTted are out of range.

STEP 6 M your variable values are not too farge, a dot should appear in the center of your
screen. Continue your program by putting it in a BASIC loop with a time delay of a second by
changing ling 50:

50 LET N = 80

Trace out the limits of your joystick control in the X and Y directions, A rectangle should result,

STEP 7 Investigate the nonlinearities of the diagonals. These are due to the logarithmic
variation of most commonly avallable potentiometers.

Digital Conversions

SUMMARY A joystick conirol has been constructed using a minimum of Inexpensive
componenis. Alternate applications include varying resistances alongthe X and Y directions ofa
plane such as found in potentiometric X-Y flat bed recorders, ora pamograg)h arrangement f;)r
digitizing from a two-dimensional plane. Other extensions of the use of this control are left to the

imaginations of the readers.

EXPERIMENT 5.2
DETECTION OF ROTATIONAL SPEED

COMPONENTS 1 * Slotted optical limit switch, type OPB861 (TRW)

1 * Opague disc {see Figure 5.8)

17 741832 Quad OR Gate

1" 74L.5244 Octal buffer

1 * DACS58 Digital-to-Analog Converter

1 * LM358 Dual Operational Amplifier

1 * Transistor, type D40K (G E.} or equivalent

1 * 150-chm resisior

1 * 10-Kohm resistor

1 * 3-V parmanent magnet DC motor o

1* 3-V DC power supply or batteries (Do not use the Timex/Sinclair power
supply for driving the motor.)

DISCUSSION Hotational speed measurement is a useful measurement Eha_t can be made
digitally. it requires a minimum of hardware coupled with the versatility of the m‘scmcompu_terio
provide rapid acquisition of rotor speed. Applications include both RPM (revolut;pns per minute}
detection as in the case of a molor, or measurement of iinear flow with a turbine, such as an
anemometer for wind speed measurement. An alternate method for measuring the speed of a DO
motor will be studied in Experiment 6.4. ‘

The speed ofthe motor canbecontrolledwithin certainlimits by ;hevoltage applsc‘-zdtothe_motor‘
The voltage appliedto the motor can, inturn, becontrolied by the mscroc.omputer using a digital-to-
analog converter (DAC} to convert an eight-bit number to a‘propomonal angiog voltage. “E’_he
analog voltage output of the BAC cannot drive the motor directly because _qannot provide
sufficient current to the motor windings. However, by using an operational amplifier (op amp) {o
control a high gain power iransistor between the DAC and the motor, the voltage of the motor's
power supply can be controlled and the speed can be varied. _

An cptical sensorusing an encapsuiatedinfrared active LED and phototransistor separatedby
anarrow air gap or slot and shown in Figure 5.8, willbe usedto measurethespeedofthe motor: The
detector has four leads to power the LED and pick up the current outputirom the pholotran'snsi_or,
these cennections are shown in the schematic, Figure 5.10. When a thin cardboard or ptastic disc
having a small notch or gap in its perimeter is mounted ontherotor shaftand insgzrtegﬁan%othe'sloi ot
the detector, the phototransistor will conduct current only when the notch is aingned with the
detector ight beam. As the rotor turns, the disc will rotate, and, whentheopague seclioncoversthe
LED, the phototransistor will turn off. ‘

In this experiment we will use the microcomputer to contral the speed of a small DC motor with
the DAC driver and to time its interval of rotation with a phototransistor detector. A look at th_e
waveaform produced by the detector will assist in the description of just how the measurement will
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Figure 58 Diagram of a Detector,

be made. As the phototransistor turns on and conducts current, a voltage wil be produced as
shown in Figure 5.9. Cbviously the time for one revolution is the tima interval fromone “on”timeto
the next succeeding “on’” time. Once the time for one revolition, calied the period, has been
determined, the number of revolutions per minute (RPM) can be determined from the formula

RPM =60/T

where T is the time for one revolution measured in seconds. For axample, if Twas measuredio be
10 msec, then

RPM = 80/0.010 = 6000 RPM

in order for the microcomputer to know when a period has elapsed it must first detect a rising
pulse “turn on.” Remember, the micrecomputer is not synchronized to the speed of the motor so it

TIMED INTERVAL

VOLTAGE
OUTPUT

OII (IFF TIME T ?

Figure 5.9 Square Wave Diagram.

ON OFF
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rnight turn on its measurement program in the middie of the transparent section. To corrsct for this,
we will cause the microcomputer to detect arising edge and then go and imetheinterval between
two successive falling edges. This will give us a reproducible value for the period T,

It would not be unusyal, howaver, to expect variations in the speed of the motor, so one single
value measured by the microcomputer might not be representative of the spead. This can be
remedied by taking ten samples of the period and calculating the average period using a BASIC
program,

The scheme then is to set the speed of the motor and start the microcomputer timing program,
time the next period between faliing edges, then jump back to BASIC to calcuiate the average
period and print out a result. The ten values of period measured will be stored as a decimal count in
the memory area of the REM statement sliocatedtothefileof data values, These addresses canbe
stored inthe HL register pair; the number of periods to be measured can be storedinthe Bregister,
and the counter used to time the period will be the count stored in the DE register pair.

To detect arising edge, the pulse produced by the photodstector is fed 1o data bus line D7 via a
three-state buffer which is enabled by the IN 3 device cade. The state of D7, once input to the
accumuiator register of the Z80 microprocessor, can easily be checked for a high or low state by
rotating the accumulator to the left into the carry flag. If D7 were a 1 {the “"turned on" state) when
input, then when the accumulator was rotated left, a 1 would have been moved out 0i bit 7 inta the
carry flag of the statusregister, (Recalithat the carry flagisthe |.SB oftheFlags registerand soacts
iike a ninth bit of the accumulator.}

Ifthe microprocessor now checks for alogic 1 i will know when bit 7 went high andimmediately
trigger the timing circuit to start on the nextfalling pulse, thatis, when bit 7falls to 0. The programwill
then wait until the next succeeding falling pulse before stopping the counter and transferring the
countvaiues into the file space of memory. The BASIC program can pick up the count values from
memaory and operate on them to produce the final result.

PROCEDURE

STEP 1 Wire the circuit with the power switched off, as shown in the schematic, Figure 5.10,
Position the optical lim# switch at the end ot the socket board. The LM358 operational amplifier is
connected as a “voltage follower” circult. In this configuration, the DAC output feeds the
noninverting () input of the op amp which in turn applies a voltage to the base of the (Darlington)
D40K trangistor driver, With the coilector of the transistor connected to the 3-V power supply, the
greater the voltage applied to the base of the transisior, the greater the amourt of current that
can flow from the collector (C) to the emitter (E) of the transistor). The volkage at the emitter then
feeds the DC motor but also feeds back to the inverting (—} input of the op amp. As a voltage
follower, the op amp uses the feedback signat to maimain aquai voitages at both its + and ~
inputs by constantly adjusting its output 1o the base of the transistor,

STEP 2 Carefully attach the disc to the motor spindle so that it is centrally mounted {not
eccentrically) and with a minimum of wobble,

STEP 3 Mountthe motorantheedge of e stable base boardthat canbe elevatadusinga wood
blocktofitinto the narrow gap ofthe detector. The base board should belong enoughto be weighted
down because the high speed of the motor willtend to vibrate and move the board. Make sure that
the detector lies aiong a radius through the center of the motor spindle for the most reliable
operation.

STEF 4 Connaect a separate power supply tothe motoror usetwo heavy duty low-voltage {3V
total) DC batteries, some of thesmall3-V motors candraw upic 0.5 A. fbatteries are used,they can
be used to weigh down the motor baseboard.
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Figure 510 Experiment 5.2 Schematic.

STEP 5 Load the BASIC program into the Timex/Sinciair microcomputer. Line 30 of the
BASIC‘program calis the subrouting at lines 1 50-190t0selectthe speedofthe motor by outputting
the variable V to the DAC at Port 11 with the USR function at address 16572/32188. The motor
speed machine routing is called with the USR function at address 16514/32130 from line 40.The
restofthe BASIC program averages the values stored by the microprocessorin memaorylocations
?6552/32j 68 through to 16572/32188 and displays the resuits.

Ten pairs of bytes are held in consecutive memary iocations 16552/32168-16571 /32187
these are ih.e 16-bit caunts ofthe number ottimesthe microprocessor went throughthe lNCremen{
s_ubrgu_ltme In the machine language proegram. Each increment takes 11.15 microsecends each
time it fslexecuted‘ Knowing this figure the BASIC program can calculate the RPM figure directly
Each pair of values is PEEKed by the BASIC program at line 70 and addedtothe sum Sinline 80:

This‘is repeated until all values are added in when the programmovas ontoline 100 and calculates
the final average spoad.

BASIC PROGRAM

10 REM 123456789 123456789 123458789 1234568789 123458780
123458789 12345 {for B&W models)

10

2o Eing 32129 {for Color maodels)

50 GOSLE 150 (for B&W models)

40 LET L = USR 16514 {for B&W models)

40 LET L = USR 32130
50 LET 5 = o {for Color models)
60 FOR A = 16552 TO 16571 STEP 2

{for B&W modals)

Digital Conversions

60 FOR A = 32168 TO 32187 STEP 2 {for Color models)
70 LET C = PEEK A + 256 * PEEK(A + 1)

80 LET § = § + C

90 NEXT A

100 LET R = 8EB/(11.15%8)

116 PRINT V; “YIELDS SPEED = » ; INT R; “R.P.M.”»
120 GOTO 20

150 PRINT “DAC VALUE = » ;

160 INPUT V

170 POKE 16573,V (for B&W models)
180 LET L = USR 16572

170 POKE 32189,V (for Color models)
180 LET L = USR 32188

190 RETURN

200 FOR M = 16514 TO 165686 (for B&W models)
200 FOR M = 32130 TO 32182 {for Color models)
210 INPUT N

220 POKE M,N
230 PRINT M; “=* :PEEK M, ;
240 NEXT M

STER 6 The machine language program itself was fairty weli covered In the Discussion
soction of this experiment. Load the machine cods by ENTERing RUN 200.

MACHINE LANGUAGE PROGRAM

DECIMAL  INSTRUCTION

ADDRESS CODE MNEMONIC COMMENTS
B&W / Coior
16514 /32130 133 £D HL NN Point to start of counts
16515/ 32131 168 toN fHle at 16552/32168,
16516/ 84 HiN

/32132 125 Hi N

16517 /32133 [ LD BN ‘Number ot file entries.
16518/32134 H| N
16519/32135 17 LD DENN Zero time counter,
16520/32136 0 LoN
16521 /32137 0 Hi N
168522 /32138 167 AND A
16523/32139 219 IN A (N} ‘Read D7 bit from
16524 /32140 3 N Port 3.
18525 /32141 7 RLCA Shift it inte Carry bit.
16526 /32142 48 JRNGC.d At tight is out then jump back
16527 /32143 251 ¢ 10 16523/32139, stay in loop,
16528 /32144 219 IN AN) Jilight is onthen read #
16529 /321458 3 N :from Port 3 again.
16530/32148 7 RLCA 'Shift DY tothe Carry bit.
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16531 /32147 58 JRCd M light Is still on then
16532 /32148 251 d Jump back to 16528/32144.
16533/32149 19 INC DE JArrive here on negative
16534 /32150 219 IN A (N) -edge. Update count in DE
16535/ 32151 3 N ‘and read D7 until
18536 /32152 7 RLCA light goes o again
18537 /32153 48 JRNCd by jumping back to
165638/32154 250 d 16533/32149.
165639/32155 19 INC DE :Count while the light
16540 /32158 219 IN A(N) remains on to get the
16541/32157 3 N :count of a complete
16542 /32158 7 RLCA revolution by jumping
18543/32159 56 JR Cd ‘back to 16539/32155.
16844 /32160 250 d
16545/ 32161 115 L (HLYE :Done. Save the count low byie
16546 /32162 35 INC HL inthe memory file,
16547 /32163 114 LD (HLLD :and the count high byte
16648/32184 35 INC HL inthe adjacent location,
16549/32185 16 DUNZ ¢ ‘Have all 1G counts been made?
16556 /32168 224 d No. Gote 16519/32135.
16551 /32167 201 RET Yes. Go hack to BASIC.
16552 /32168 0 NOP 20 byte Data Table.

to : :
16571 /32187 0 NOP ‘End of Table.
16572/32188 62 LD AN :Load motor speed value
16573 /32189 0 N «obtained from BASIC
16574 /32190 211 OUT (N),A inte DAC register
16575/32191 i N atPort 11,
16576 /32192 201 RET ‘Backto BASIC subroutine.

STEP 7 Double check your machine code and hardware electrical connections then RUN
yourprogram. £nter a DAC value of 96. You may havetohelpthe motor startrunning by rotatingthe
disc with your finger.

STEP 8 Successful measurement of the speed of the motor will be indicated by a sensible
answer printed on the video screen, i you have alignment problers with your disc in the narrow
gap, it is possible 10 produce & number of spurious pulses each cycla (or period) giving rise to a
higher speed than expscied and a noensensible result. I you suspect spurious pulses, carefuily
adiust the physical location of your detector withrespectto the rotating disc. You shouldbe abieto
adjust cut any inconsistencies,

STEFP 8 Checkthelinearity of your motor to applied DC voltage. Figure 5.11 showstheresults
we obtained by measuring the cutput of the DAC {curve A), the output of the op amp {curve B), and
the motor speed (curve C) as a function of the number outputtedio the DAC. Noticethatcurves B
and C are straight lines over most of the range of values. We made four measurements per DAC
value at intervals of 32 between 64 and 255. Above V = 192 the speed tends to flatten. Below
V = 84 our motor tended to run in spurts, and sensible measurements could not be taken.

Digital Conversions

B (VOLTS + 1)
1.210 3.5

C (X10000 RPM)

128 1g2 285

Figure 511 Analog Resulls.

STEP 10 Savetheresuits of this experiment for Experiment 6.4 in which you couid make use
of the spesd versus applied voltage relationship obtained here.

SUMMARY  The determination and controt of rotational speed are very useful megsu(em‘ems in
science and engineering applications. The correspondence between t_he application in t;;:s
experiment and Experiment 5.1 Hlustrates how differenttraqsdu cerscanhe tmp!@mented using loe
same digitat timing technigue. In this experiment, we have illustrated both dagxt_ai ouipgt torana bg
conversion and digital input. For lower speeds the transparent.and opaque dl_sc sect:o;&s oatn5 g
preportioned differently or several sections of each ca_n ‘be laid out on_ t_hg disc, Experiment b.
ilustrates additional applications of this technique for digital data acquisition.
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EXPERIMENT 5.3
ROTATIONAL POSITION DETECTION: SHAFT ENCODING

COMPONENTS 3 * Siclied optical limit switch, type OPBB81 (TRW)
3 7 Transparent plastic discs (see Figure 5.12)
1% 741832 Quad Two-Input OR Gate
1" 74L8244 Octai Three-state Buffer
3 ™ 330-ohm resistors
3 * 10-Kohm resistors

DISCUSSION - Therotational orangular position of a shaftis often useful or necessary information
in an experiment. Some examples are the determination of wind direction with a weather vane, the
position of a valve, or the setting of a controi knob. The determination of an angular positioncanbe
made digitally with optical sensors and sectioned transparent discs mounted on the shaft to be
measured, Because the precision of the position doubles with each additional bit input, the
maximum number of bits for an eight-bit input port would limit the precision to 380/255 or 1.4
degrees. Of course, higher precision would be possibie using more bits and more than one input
portio read the position. In many cases, such high precision is not needed. For example, the eight
major compass directions of a weather vane require only three bits.

The design of the three discs and their alignment is shown in Figure 5.12. Because they are
mounted on a common shaft, reading the bit pattern fora particutar directionis done by reading a
fogic 1if the disc Is transparent in that direction or reading a logic 0f it is opaque in that direction,
Cne important factor in encoding direction is how to detect the positions refiably when one bit is
uncertain. If we write the bit pattern for the eight directions by referring to Figure 5.12, the foliowing
table is obtained:

9]
OO OO~ = e D I
OO = = OOOo O
Ot = OO = Do O

wherethenorth direction (N)is repeatedtemakeiteasierto compare codes for adjacent directions.
The tirst cbservation we make is that the normal sequence of binary counting is nof obtained. The
encoding cbtainedis known as the Grey code. lis distinctive difference isthat only one bit changes
its value between adjacent directions. Therefore, if the weather vane should point exactly between
WandNW, forexample, only the middie bit would be uncertain. Whetherthe optical sensor detected
& logic 1 or logic 0 for the middie bit would stilt let the computer decode the direction within the
precision of oneg-eighth of the circle.

The circuit to interface the shaft encoder to the microcomputer is very simple. The collectors of
the three sensors are each connectedto a three-state buffer. The three-state buffers are enabied
by Device Sefect Pulse (IN 3)* ohiained by ORing IN* and Device Cade 3. The emitters of the

Digital Conversions
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m

Figure 512  Disc Paiterns for Eight Directions.

sensors are grounded, and their LEDs are connscted tothe power supply through current fimiting
resistors. The circuit is shown in Figura 5.13.

PROCEDURE
STEP 1 Prepare three 2-inch (50 mm) diameter discs from thin {1/16 inch or less) clear

plastic sheet either by removing the protective paper for the transparent sections or by masking
(tape or paint) each opaque section as shownin Figure5.12 Alignthemontheshaftio beencoded.

12 8 DISC A DISC B DISC C
{]‘ OPBS861 OPB861 OPBB861

IN¥ 3

Figure 513 Experiment 5.3 Schematic,
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A shaft made from a 1/8 inch (3 mm) X 2 (or 3)inch machine screw using washers and machine
nuts against hoth faces of each disc will provide firm mounting and aliow for easy alignment. This
shaft can then be coupled 0 any shaft of interest.

STEP 2 The sensors can be mounied around the circumference of the discs at any position
asiong as the orientation of each disc to its sensor is as showninFigure 5.12. Forexample, aboxor
cylinder housing with the sensors at positions of 3, 8, and 9 o'clock (right angles) can be used. The
ends of the housing can then serve as shafl bearings if necessary.

STEP 3 Withthe +5-V powaer rail disconnected from the supply, wire the circuit as shown in
the schematic.

STEF 4 The programto acquire the datais very straightforward. The position cede obtained
from the least three bits of Input Port 3 are returned from the USR subroutineg and assignadtothe
variable P in line 20. Line 30 is the method to branch in Sinciair BASIC based on the value of P.
Standard BASIC uses the command: ON P GOTO 50,60, . .. etc. The PAUSE at line 120 times
readings about once every 5 seconds, Twenty-tworeadings will be obtainad before you will haveto
input CONTInue, You could insert a line 25 SCROLL if desired to make continuous readings.

The machine language subrcutine is equally simple. Becausethe value of the BC register pairis
carried back 10 BASIC, itis initialized to G. The input portis read and ANDed with 00000111 to zero
the five most significant bits of the value read into the accumulater. The value ofthe least three bits
are loaded inte register C (B wifl be §) and returned as the BASIC variable P,

L.oad the BASIC program. RUN 200 and enter the decimal code of the machine language
routing,

BASIC PROGRAM

10 REM 1234586789 {for B&W models)
10 CLEAR 32129 {for Color models)
20 LET P = USR 16514 {for B&W models)
20 LET P = USR 32130 {for Color models)
30 GOTO 40+10%*pP

40 PRINT *“ NORTH"

45 GOTO 120

50 PRINT “NORTHWEST?”

55 GOTO 120

60 PRINT “SOUTHWEST?”

65 GOTO 120

70 PRINT “WEST?”

75 GOTO 120

80 PRINT ‘“NORTHEAST™"

85 GOTO 120

90 PRINT “EAST?”

95 GOTO 120

100 PRINT “SOUTH'®
105 GOTO 120
110 PRINT *“ SOUTHEAST?”

120 PAUSE 300

Digital Conversions

130 GOTO 20
200 FOR M = 16514 TO 16522 (for B&W models)
200 FOR M = 32130 70 32138 {for Color medels)
210 INPUT N

Z20 POKE M,N

230 PRINT M
240 NEXT M

“=” ; PEEK M, ;

MACHINE LANGUAGE PROGRAM

DECIMAL  INSTRUCTION

ADDRESS CODE MINEMONIC COMMENTS
B&W / Color
16514 /32130 1 LD BC,NN .Zero registersfor BASIC
16515/32131 0 Lo N wvariable P.
16516/32132 4 Hi N
16517 /32133 215 IN AN ‘Read Optical sensors
16518/32134 3 N at Port 3.
16519732135 188 AND AN :Zero all bits but
16520/32136 7 N D2, 51,and DO
16521 /32137 79 LD CA Putin register C,
16522 /32138 201 RET Take it back to BASIC

STEP 5 Having checked the sofiware and hardware {detector and circuit), RUN your pro-
gram,

STEP 6 Casually rotate the shaft and check it out for proper encoding. Note the position of
due north, etc.—you might mount a short pointer on the shaft made froma piece of breadboarding
wire wrapped around the shaft.

STEP 7 Align one of the section boundary lines of one of the discs with its sensor. Rotate the
disc just enough on either side of the boundary to read adiacent compass points. What directions
woutd you obtaln if the disc were encoded in binary instead of the Grey scale?

STEF 8 You may want to save this interface and use it with the stopper motor in Experiment
5.4 The combinationofthetwo experimentsislefttothereader. ltwould beasimple matterto builda
wind speed anemometer using Experiment 5.2 and a wind direction indicator with Expatiment 5.3.

EXPERIMENT 5.4

STEPPER MOTOR CONTROL

COMPONENTS 1 * Stepper motor [e.g., Quadrapulse 8AU0705 {Septor) (5 V, 0.85 A/coil,
48 steps/rev))
1 " Power supply for coils of stepper motors
4 * Driver transistors [e.g., D40K (GE) (2 A, 30 V)]
1 * 74L.875 Quad Latch
1% 741802 Quad NOR Gate
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DISCUSSION  Robetics are gaining in importance and the control of movement in robots is most
often accomplished using slepper moliors. Various stepper motors are available in the
marketplace; we chose one which worked from 5V and drew 500 mA percoil, atotalof 1 ADC at 5
V, hence the need for a DC power supply fo drive this part of the experiment.

We have already seen that the rotor of the motor is stepped by applying pulses to one of each
pair of the four colls inthe sequence 0110 and then rotating the sequence to the right or left by one
bit, depending on which direction you wish the motor io rofate. You will note that the
microprocessor instruction set contains an ideal instruction with which to carry out this
procedure: the RRCA (Rotate Right the Contents of the Accumuiator) or the RLCA instructions.
Each time such an instruction Is executed and output, the motor will step one positionto theright
or left.

The interface uses a 74LS875 four-bit laich o hold the four-bit word cutput from the
accumulator register of the Z80 microprocessor. The laich is enabled by the device select pulse
generated by the 741,502 NOR gate. The latch drives the bases of the four transistors connected
te the four coils of the stepper motor. When the latch cutput is low (0 state) the base of the
transistor has insufficient bias to cause the transistor 1o conduct so the collector output of the
transistor stays high at near 5 V 30 ne {or very litile) current is drawn through the coil, Whan the
tatch output is high (1 state) the base of the transistor is forward biased, and the transistor
conducts so bringing the collector voltage down to near 0V and placing nearly 5V across the coil.
The coils are activated and apply a magnetic force to the rotor which causes the motor to
advance one step arcund.

Robot arms used to demonstrate the principles of robotics have at least six degrees of
freedom. Each degree of freedom would have a stepper motor attached to contral movement in
that particutar plane of motion, for exampie, arm rotation, elbow bending, wrist twisting. Each
motor would have sirsilar interface circuitry activated by different device select puises. To put the
robot arm in a particular poshion starting from a known reference position would require &
sequence of instructions 1o each motor telling it how many steps it would have totake to reach the
designated position.

Inthis experiment you will accomplish the setting of the stepper motor at a particular position,
but once again you will be able 1o visualize more complex situations.

PROCEGURE

STEP 7 You will have previously constructed the transistor driver circuiiry neeced to drive
the stepper motor. This circuitry will depend somewhat on the specifications of the stepper motor
you purchase or have available. Most power transistors however can have their bases driven
directly by the cutput of a TTL latch chip if not by an LS latch chip, So even if you have 24-V coils

{and need a 24-V supply) on your stepper motor, your driving transistors couid be driven from the
fatch chip.

STEP 2 Wire the circuit as shown in the schematic, Figure 5.14, making certain that the
positive (+) volt line from your motor DC power supply is not connected to the +5-V line of the
Timex/Sinctair unit. Do however make sure that a GND, 9V, line is connected between the two
supplies. Wire your 741502 quad NOR gate to produce the device select puise OUT 3(anactive
high device select puise).

STEP 3 Insert your program, and check both hardware connections and the software
program.
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Figure 514  Experiment 5.4 Schematic.

BASIC PROGRAM

10
10
20
30
30
40
50

60
70
80

80
70
80

90
160
110
120
120

REM 123456789 123456789 123456789 1234567 {for B&W models)

CLEAR 32129 (for Color models)
FAST {for B&W models)
LET L = USR 16515 (for B&W modsls)
LET 1. = USR 32131 (for Color models)

PRINT AT 14,0; “ENTER NUMBER OF STEPS REQUIRED”
INPUT DC
* ok %k
POKE 16514,DC
LET L = USR 16521
PRINT PEEK 16550
* ok ok ok
POXE 32130,DC
LET L = USR 32137
PRINT PEEK 32166

(for B&W models)

{tor Color models}

¥ Ok % %

LET N = 33333

PAUSE N

GOTO 40

FOR M = 16515 TO 16548 (for B&W models)
FOR M = 32131 TO 32164 (for Color models)
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130 INPUT N
140 POKE M,N
150 PRINT M;
160 NEXT M

MACHINE LANGUAGE PROGRAM

ADDRESS

B&W / Color
18514/ 32130
16515/ 32131
16516/32132
16517/
/32133
16518 /32134
16519/32135
16520/ 32136
16521 /32137
16522 /32138
16523/
/321389
16524 /32140
16525/ 32141
16528/
/32142
16527 /32143
16528 /32144
16529
/32145
16530/ 32148
16531 /32147
16532 /32148
16533/32149
16534 /32150
165835 /32151
16536 /32152
16537 /32153
16538/32154
16539/ 32155
16540/ 32156
16541 /32157
16542 /32158
16543/ 32159
16544 /32160
16545/ 321861
16546 /32182
16547 /32163
16548 /32164

DECIMAL
CODE

< >
33

166
64

125
54

51 -

201
33
166
84
125
58
130
64
125
50
147
64
125
&

0
126
17
255
100
211

29
32
253
21
32
250
15
16
242
119
201

" ; PEEK M, ;

INSTRUCTION
MNEMONIC

LD HL NN
Lo N

Hi N

Hi N

LD (HLLN
N

RET

LD HL NN
LoN

Hi N

Hi N

LD A (NN)
LoN

Hi N

HiN

LD (NN),A

Hi N

Hi N

1D BN

N

LD AHL)
LD DENN
LoN

Hi N

OUT (N),A
N

DECE
JRNZ,d
d

DECD
JRNZ d
d

RRCA
DJNZ d

d

LD (HL).A
RET

COMMENT

:No. steps POKEd by BASIC
‘Address pointer of bit
‘pattern mask stored

at 16550,

or 32166,

:‘Load mask at 16550/32168.
‘Mask = 00110011,

:Back to BASIC line 40.
‘Address points to mask

at 16550/321686,

:Get number of steps
‘at address 16514/32130.

:Put number of steps into
:subroutine at 16531/32147

:Load number of steps into B,
Loaded from 168527/32143.
Put mask into accumulator.
Set up delay counters

;in register £

:and register D,

:Send bit pattern to

stepper at Port 3,
:Countdown E

Is E zerc? .

:No, go back to 16538/32154.
Yes, now countdown D.

Is D zero?

:No, then countdown E again.
‘Rotate mask for next step.
:Are all steps in taken?

‘No, goto back to 16533,
Yes, then save current mask
:and go back to BASIC.
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16549/ 32165 0 NOP
16550/ 32166 < > MASK

STEP 4 Switch enyour DC power supply to your stepper motor, and check that the motor is
held, The rotor should resist your attemptta move it. Next RUN your program, and input how many
steps you wish the motor to take. Try two or three steps first,

STEP 5 The program accepts this input and pokes the decimal value into memory location
16514/32130 where the machine tanguage program coliects it and transfers it to register B,
which is used as a counter for the number of steps. The machine language program outputs the
code 51 decimal, 00110011 in binary, which is the sequence of bits reguired by the motor coils,
The program then executes a time delay before rotating the accumnulator contents to the right at
memory location 16544 and outputting another step. This carries on until register B is 0
whereupon the Z80G instruction DJINZ is executed and the code of the last step is stored in
memory before the program returns to BASIC to wait on another entry.

STEP 6 Thenextentry picks up the previousty stored code for the position of the metor and
starts stepping from the last remembered position.

STEP 7 Change the code of the instruction RRCA to that for RLCA at memory location
16544/32150, and note that the motor steps in the reverse direction.

STEP 8 Determine how many steps per revolution for your stepper motor. Qur motor had 48
steps per revolution. You might observe at the first run that the motor is unsure which direction to
step. Thisis due tothe code 51 decimal being used. The molor at switch on may not beiined up for
this particular code; however, the motor is brought into synchronization quickly and then
continues stepping in the correct direction,

STEP 9 Any unusual problems, such as missing out & step when rotating, could be dueto a
fauity drive transistor. These can be checked by cennecting a voltmeter to the collector of each
transistor inturn and noting as you step through atleast four steps slowly, that the coflector should
g0 down {o near 0 V as well as come back uptonear & V. if one or more do not show this behavior,
they should be replaced and the motor coils should be checked as well.

SUMMARY  Stepper motor controi is an important interfacing experiment, but it requires more
than the basic equipment most of our experiments have utilized. This experiment aiso

demonsirates the need for using discrete componenis, the trangistors, to control power devices
which draw heavy currents of 0.5 A or more. Much interfacing requires this level of sophistication.

EXPERIMENT 5.5
REAL TIME DIGITAL CLOCK

COMPONENTS 1 * 58167 Digital Clock IC
1% 32.768-KHz miniature crystal
1% 741802 Quad Two-Input NOR Gate
1* 741.8373 Three-state Cctal Latch
2" 20-pF capacitors {preferabiy polystyrene)
1 * 0.1-pF capacitor
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DISCUSSION In many experiments, especially ones which monitor slowly changing data
continually or over refatively long periods of time, it is desirable to acquire the data as a function of
real ime, By realtime we mean actual clock time or time of day. When we refer to slowly changing
data, we mean siowly with respect to the speed of the microprocessor, so readings of once per
second or longer might be considered slow, For example, monitoring temperalure, pressure, or
wind velocity and direction does not typically require data acquisition more than once every 15
sec to provide more than enough information to produce essentially continuous data. With areal-
fime clock we also have the option of using the computer as sither a stopwatch or lapse timer,
Many experiments can be designed where the start and stop controls for some event can be
performad by triggering the computerto read areal time and caloulate the difference. Accuracies
of 0.01 seconds in BASIC programs or even milliseconds in maching language should be
achievable.

The integrated circuits used in the manufacture of digital clocks can be interfaced to the
computer 1o provide time readings however thara are also microprocessor-compatible clock [Ts,
which are very easy o interface, The MM58167 is a 24-pin CMOS IC (National Semiconductor)
typical of the latter. Its timing is controlled by a quartz crystal. It is a calendar clock made up of
eight counter registers which kaep the month (1 to 12), day of month {1 tc 28, 30, or 31 depending
on month), day of week (1 to 7), hours (0 to 23), minutes (0 to 58}, seconds (G 1o 59), fractions of
saconds {0.00 to 9.99), and milliseconds (0 to 9). There are also eight presettable laiches
corresponding 1o the eight counters which can be used for alarm-type functions. The chip
interfaces elght data lines directly to the Data Bus of the microcemputer. Te access any cne of
the 16 counter or latch registers, there are five address input lines which would ordinarily be
connected to the computer's Address Bus, Each counter and latch is thus treated as a separate
input/output port. There are also eight additicnal control registers, which function as individual
norts to bring the totat count up to 24, The Device Codes (Port Addresses) ars givenin Table 5.2,
We will confine our attention to only those ports related to the counters and & few of the controls.
More advanced intertacing of the alarm latch ports can be performed as an advanced project
using the manufacturer’s data sheet.

The data byte transferred between the clock and the microprocessor is encoded in BCD
{binary-coded decimal). The mare significant four biis (D7-D4) contain the tens and the less
significant four bits {D3-D0) contain the ones of the time unit. For example, 4 mheldinthenours
register (counter or latch) is 16 (= 12 -+ 4) and is encoded in BCD as 0001 {value 1) and 0110
{value 6) giving 00010110 as the byle with the decimal value {for BCD 18) of 22. The number 22
would be output to Clock Port 4 (hours counter) to set the time for 4 e, A another example, the
largest value in the minutes and seconds registers would be 59: the byte value for BCD 59 is
01011001 or 83 (64 +16+8+ 1)

Because the Timex/Sinclair decodes the address bus lines relatively, we cannotinterface the
MM581867 directly tothe Address Bus. As shown in Figure 5.15, the address ports can be selecied
with five latches wired as an cutput port. The clock Is interfaced as twe separate ports; the
741 5373 latch will be the address port that selects the desired clock register as thefirst port. The
data transfer either to ar fromthe addressed clock register is the second port. In programming the
computer 1o read (input) or set {outpul) the calendar/clock registers, we will first output to the
clock address port the code 10 select a register, and then Input/ output the data from/to the clock
data port.

|
;
{
|

Digital Conversions

TABLE 62 CLOCK DEVICE CODES

PORT ADDRESS DEVICE CODE FUNCTION
A3 AZ Al Decimal

b

wh ok = ek ik e S O QOO0 OO0 OO0 OR

Counter: miliiseconds
Counter: 0.XX seconds
Counter: seconds
Counter. minutes
Counter; hours
Counter: day of week
Counter: day of month
Counter: month

Latch: milliseconds
Latch: 0.XX seconds
Latch: seconds

Latch: minutes

DODARU LN = O

S OOOOD OO -t S —m w a OOODO000

- S DO DD DO e ek o OO O

e DD e DD ek e DD e (D D ek ek DD e ek DD

mec-o—*oéo—tcaﬂcnwo—xoaoaowoc);
-

12 Latch: hours

13 Latch: day of week

14 Latch: day of month

15 Latch: month

16 Control: alarm stalus (Input)
17 Control: alarm mask (Output)
18 Control: reset counter select
19 Control: reset latch select
20 Control: counter read status
21 Control "GO" command

22 Controb Standby

31 Control Test

PROCEDURE

_ STEP 1 WARNING: When handling the CMOS clock chip, be careful to prevent siatic
discharge, Before applying power to your circuit, make absolutely certain that ali input pins are
connected, Failure to cbserve either of these precautions may result in permanent damage to the
iC,

STEP 2 Wihthe +5-V power rail disconnected, wire the circuit as shown in the schematic.

STEP 3 We shall use several short BASIC and machine language programs 1o test the
action of the calendar/clock. Our first interest is to test whether the clock is running. To do this,
the BASIC program will read the seconds register and display the reading on the screen. The
value of the rogister will be held in the USR variable, L. as twe BCD digits, Lines 30 and 40 convert
the byte to the tens and units values, T and U respectively. Recalt that the twe four-bit values are
equivatent to a hexadecimal number, hence the integer vaiue of 1./16 yields the T value and the
remainder, L — 16T, yields the U value. Load the foltowing BASIC program.
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+ 5V A
20] [0 & | BASIC PROGRAM

3 2 : 10 REM 123456789 123456789 123456 (for B&W models)
18 19 ' 10 CLEAR 32129 (for Color models)
2 : [ 20 LET L = USR 16514 (for B&W models)
D Q ' 20 LET L = USR 32130 {for Color models)
17 16 30 LET T = INT(L/16)
71 a7z (6 40 LET U = L — 167
8 50 PRINT T; S i
) — _9....)( f 60 GOTO 20
13 12 100 FOR M = 16514 TO 16528 (for B&W models)
vy Py 100 FOR ¥ = 32130 TO 32144 (for Color models)
Yoo o X 110 INPUT N
) EN oC* 120 POKE M,N
Ca* 1 11] ‘La 130 PRINT M; “=” :PEEK M
3 )02 140 NEXT M
ouT* STEP 4 The machine language subroutine loads the clock address port, Device Code 3,
FN® with Seconds Register address, Address 2. and then inputs the value from the seconds counter
C11* into the microprocessor's accumulator. The vatue is transferred to the C register after zerping the
11213 | B register for return to BASIC. Use RUN 100 to load the machine coda for the subroutine,
0o 15 _,5___] MACHINE LANGUAGE PROGRAM
8
D1 10 DECIMAL  INSTRUCTION
D2 17 7 ADDRESS CODE MNEMONIC COMMENTS
D3 18 8 B&W / Color
19 g 16514 /32130 62 LD AN ‘Load Seconds Counter address
D4 20 53167 23 | 16515/32131 2 N into Accumulator,
D5 " +5V i 16516/32132 211 OUT (N),A ithen lcad it into the Latch
21 4 ! 18517 /32133 3 N :at Port 3.
Dé > vy X | 16518/32134 219 IN A(N) ‘Read the counter value
D7 0.01 uF 16519/32135 11 N :from Port 11,
13 10 I 16520/32138 6 LD BN ‘Zero the B register,
7 ‘Tﬂ Xta . 16521 /32137 0 N
X e . 16522732138 79 LD CA ‘Put the counter value into
: 16623/32139 201 RET :Return BC value to BASIC,
24‘ £2 l J; 20 pF each i 16524 /32140 62 LD AN ‘Load GO command register
) 16525/ 32141 21 N
+5v j 16526/ 32142 211 OUT (N},A 1o Port 3.
: 18527 /32143 3 N
Figure 5.15  Experiment 5.5 Schematic. ' 16528732144 201 RET ‘Return to BASIC.

STEP 5 A second subroutine at addresses 16524/32140~16528/321 44 was alsc loaded
i Step 5. This subroutine uses the GO command register at address 21, By addressingthis por,
the clock registers for the seconds, fractions of seconds, and miliseconds are zeroed. Ordinarily




134 Chapter 5

this subroutine would be used to synchronize the clock with real time. We use it hare justto clear
these countars.

STEP 6 Checkyour wiring once more, then connect powertothe socket board Now ENTER
the direct command;

LET L
LET L

USR 16524 (B&W)
USR 32140 (Color)

H

to clear the seconds registers and then ENTER RUN.

STEP 7 The program should fist the time readings until the dispfay has filed the 22 lines of
the screen. If you do not observe about one 1o ten readings per second, power down and check

out the circult and program. You can delete or insert REM atthe beginning of lines 110 and 120
and RUN 100 to reread the machine cods,

STEP & Enter the diract command FAST, andthen RUN, The screen will biank and reappear
in a few seconds with the next 22 readings. How many seconds did # take? Because BASIC runs

about four times faster in FAST mode {in the B&W models), your list shouid contain about four
readings per second.

STER & Because both B and C are returned as a 18-bit value to the USR variable, we can
revise the machine fanguage subroutine to read and return two counter registers. By selecting
the seconds fraction counter and the milliseconds counter at clock addresses 1 and 0,
respectively, we can time how fast the BASIC routine 1akes to make a reading. RUN 100 (make
sure lines 110 and 120 have been restored), and load the following cods.

MACHINE LANGUAGE RCUTINE

DECIMAL  iNSTRUCTION

ADDRESS CODE MNEMONIC COMMENTS
B&W / Coior
16514 /32130 62 LD AN :‘Load address for
16515/32131 1 N :0.XX seconds counter
16516/32132 211 CGUT (N)LA ito latch port.
16517/32133 3 N
16518 /32134 219 IN A (N} JInput 0.XX seconds
16519/32135 11 N :counter from clock.
16520/32136 71 LD BA ‘Save it in register B,
16521 /32137 62 LD AN {.oad address for
16522/32138 0 N milliseconds counter
16523/32138 211 OUT {N),A 10 latch port.
16524 /32140 3 N
16525732141 219 IN A (N} dnput 0.00X counter.
16526732142 11 N
16527 /32143 79 LD CA Save it in register C.
16528 /32144 201 RET Pass BC back to BASIC.

Digital Conversions

STEP 10 To convert the value assigned to L into BCD digits, add the following lines to your
BASIC program.

BASIC PROGRAM

25 LET B = INT{L/256)
30 LET ¢ = L - 256*B
35 LET T - INT(B/16)
40 LET H = B — 16%T

45 LET M = INT(C/16)
50 LET U = ¢ —-16%M

55 PRINT “.» ;T;H;M;U

Lines 25 and 30 split the 16-hit value of L backinto the two bytes thgt were inregisters B a;cég
and assigns them to the BASIC variabies B and C. The lines ?ai%owmg‘t?}en evaluate the |
digits in each byte as before. The U variadle should be 0 because the milliseconds counter enly
stores one digit.

STEP 11 i your computer is a B&W model, it should still be_in FAST modgz. Enfter RU;%{;’V:Q
the display reappears, the 22 values should all be drifferent. V}/r;te down th_e Ixsptgu\r;;r;ze}m.(m)
use your computer to take the difference between adjacent pairg by ENTERing dc(! o tc;
etc. Note that when the second number, {n2), is smaller than {n1}, you have to a boz o
account for a rollover of the seconds counter. We found most qf the d;fferen_ce_s were lﬁe we "
0.35 and 0.37 sec with the TS1000 but whenever there was a 0 in one of the digits ihei di @rgggn
was 0.25. Apparently the BASIC interpreter processesa ze_rofaster thananonzero vaAue. e oan
conclude that it takes 370 msec to execute the nine fings of the BASIC loop. D avf ger
difference of .08 sec onthe TS2068 seems toindicate that the Color models runfourtimes fas
than the B&W maodels in FAST mode.

STEP 12 “fhefinal program will read all the counters of the caiendarfc_iock, storethe valges
in memory locations 18535/32151 to 16542/32158 at the end of the machine tanguagergﬁg%
and display them sach time any key (except BREAK) is pressed. ENTER the following
program.

BASIC PROGRAM

123456789 123456789 123456789
10 REM 123456789 for B&W models)

20 LET L = USR 16514
30 FOR M = 16535 TO 16542
kK Ok k
10 CLEAR 32128 {for Color models)
20 LET L = U3SR 32130
30 FOR M = 32151 TO 32158
* & kX
40 LET N = PEEK M

45 GOSUB 200
50 PRINT “ :» ,T;U;
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55
60
65
70
75
100
100
110
120
130
140
150
200
210
220

NEXT M
PRINT

PRINT “ M / bD(W) H :M :8 .XX X0

PAUSE 33333
GOTC 20
FOR M

16514 TO 16534

FOR M = 32130 TO 32150

INPUT N
POKE M,N

PRINT M; % =* ;PEEK M
NEXT M

STOP

LET T = INT(N/16)
LET U N — 18T
RETURN

{for B&W models)
(for Color models)

STEP 1 3 Toread all eight counters, the machine code subroutine calls another subroutine.
ituses regssief B as a countdown to know when all eight registers have been input. ltalsouses B
to determine which register 1o input. Recai that the DJNZ d instruction decrements register Bto
test whether to jump or not. Load the following code by ENTERIng RUN 100,

MACHINE LANGUAGE SUBROUTINE

DECIMAL  INSTRUCTION

ADDRESS CODE MNEMONIC
B&W / Color
16514 /32130 33 LD HL NN
16515/ 32131 151 Lo N
16516 /32132 64 Hi N
16517 /32133 6 LD BN
16518/32134 8 N
16519/32135 205 CALL NN
16820/32136 141 Lo N
16521 /32137 64 HiN
16522 /32138 16 DJINZ d
16523/32139 251 d
16524 /32140 201 RET
16525 /32141 120 tDAB
16526 /32142 214 SUB N
16527 /32143 1 N
18528/32144 211 OUT (N)LA
16529 /32145 3 N
16530/32146 219 IN A(N)
16531 /32147 11 N
16532 /32148 118 LD (HL)A
16533/ 32149 44 INC L
16534 /32150 201 RET

COMMENTS

:Point ML to stari of
.data file at memory
Jocation 16535/32151
:Set B to count down
the 8 counter registars,
:Subroutine to read and
:store a counter ragisier
.at address 16525/32141.
:All counters read?

:No. Jump back to 16519/32135,
‘Yes. Return to BASIC.
‘Subroutine to read:
:Clock register address
:equais B-1. '
:Load clock address

.at latch port.

‘Read data from clock
at port 11,

:Store data in file,

:Point te next file entry.
:Return to 16522/32138,

Digital Conversions

STEP 14 RUNthe program. You should stifl be in FAST mode (ona B&W modei}and should
see a display of all eight counters. Of course, they have not been set to give the true time‘. A
convenient way to load the counters is to add a small USR routing to the REM staterment following
the data file. Load the following machine code by modifying line 100G to:

]

16543 TO 16551
32159 TO 32167

100 FOR M
100 FOR M

and then ENTERing RUN 100.

MACHINE LANGUAGE ROUTINE TO SET COUNTERS

DECIMAL  INSTRUCTION

ADDRESS CODE MNEMONIC
B&W / Color
16543/ 32159 62 LD AN
16544 /32160 7 N
16545/ 32161 211 OUT {N}A
16546/ 32162 3 N
16547 /32163 62 LD AN
16548 /32164 1 N
16549 /32165 211 QUT (NLA
16550/ 32166 11 N
16551 /32167 201 RET

{for B&W models)
{for Color models)

COMMENT

:Set up Clock address
:starting with Months,
:Latch address at

port 3.

:Set up to load the counter
:counter with data.

:and outpul it to the
:clock at port 11.
‘Return to BASIC.

STEP 15 Thecounters can be individually loaded with the proper date and time by giving the

direct commands:

POKE 16544, {Counter Address) {B&W)

POKE 16548, (Data)
LET L = USR 16543

POKE 32160, (Counter Address) {Color)

POKE 32164, (Data)
LET L = USE 32159

where the two quantities in parentheses wili be numbers: the Counter Address value is obtained
from Table 5.2 and the Data value must be determined according to the date you are setting. We
need only set from the manths to the minutes counters and then execute the GO command to
synchronize 1o real time, Thus we need only load five counters. For example, suppose we wish to
synchronize on Manday, November 14 at 10:22 am; then the five pairs of POKEs wili be:

REGISTER MONTH DATE WEEKDAY HGUR MiIN
(Counter Address) 7 5] 5 4 3
Settings NOV 14 MON 10 22
BCD 11 14 1 10 22
Binary 00010001 6001100 00000001 00010000 00100010
{Data) 17 20 1 16 35
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To synchronize to real time, the address register of the GO command, 21, can be POKEd at

16544/32180 No datais required so we do not care what value is at 1 6548/32164. Type the USRK
calk

LET L
LET L

H

USR 16543 {(B&W,
USR 32159 {Color)

H

and wait for the second hand ofthe o

set, then press ENTER. Now ENTER
displayed.

fock you are using as a standard to reach the time you have
RUN. Each time you press a key, the date and time will be

EXPERIMENT 56
ASYNCHRONOUS SERIAL COMMUNICATION

COMPONENTS 1 * 8251 USART ic
1 * 556 Dual Timer 1C
1 ¥ 741800 Quad Two-Input NAND Gate
2 " 330-chm resistors
2" 15-Kohm resistors
2* 01-pF capacitors
2" 0.01-p4F capacitors
1* Lamp Monitor

DISCUSSION  The Timex/Sinclair is a particularly good computerto use in 2 real

measurement
Si

tuation as a data acquisition ang experiment control device because its modest cost permits

dedicating it to a singie instrument or experiment. An interface circuit can be developed for the
particular apparatus and attached to the computer on a permanent {or semipermanent) basis. In
such cases, a host computer would be available which has larger memory capacity, disk storage
for data files, graphics and prinfer capabilities that would be too expensive to dedicate to one
measurement apparatus, It is then highly desirable to be able to have the one or more dedicated
micrecomputers communicate with the host computer. We have seen that communication
between computers up to 50 # apart is easily achteved using a pair of wires in an RS-232 serial
link.

In this experimant, we shall demonstrate how such communication is possibie using a TTL
compatible paralisi/seria! converter designed specifically for use with computers, Like the 8255
programmable peripheral interface studied in Chapter 4, the 8251 USART is also programmable
in the sense that command controt data can be sent to the chip to configure it for specific
transmitting and receiving conditions. This is in contrast to the UART described earliar in this
chapter, which had to be hardwired where the salection of number of stop bits, data word tength,
parity, etc. were pin inputs which had to have logic 1s or Os wired to the chip,

The 8251 Programmable Communication Interface IC is a 28-pin TTL compatible Universal
Synchroncus/ Asynchronous Receiver/Transmitter (USART). The pin-out diagram of the IC is
shawn in the schematic for the experiment, Figure 5.16. The USART isa clocked devicereguiring
TTL tevel (+5 V) frequencies. There are three separate clock input pins: the transmitter clock,
TxC* at pin 9, the receiver ciock, RoC™ at pin 25, and the internal clack, CLK at pin 20, Typically
the transmitter and receiver clocks would be connected 1o the same frequency source. The

|
f
1
!
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+ 5V 26| {4 %
27 3
———— Re: f—— LED Probe
28 ol o)
1 330 each
2 24 +5V
5 DTRI55 X 14| 110
RTS =
3] 18 « 9
7 T™T = 556b
CcTs 'jEfG-X 11
8 BD |- x f‘
12 19 1pF
C/D* TRY = I}-o.o u
19 WR* RRY [= X 0.1pF
13 RD* DSR -2—2X 15K _each
_g_j + 5V — ;
10 20 1
9 5
3 11 1 5562
lCiltESET _22{ 3 2
* 4 6 _[— 7 8
C??* 51 '00 0.01uF l 0nF
+ 5V

Figure 516 Experiment 5.6 Schematic,

. ) i
frequency of the internal clock must be at least 30 tames_ greater than the freque?céyt{:;t};?ﬁeon
gither the transmitter or receiver. There are gight data pms;ordpagraé%@:é?tr;sgi;;pj&ter creer
i i ted directly to the gata bu anc
the chip and the computer, which are connec : ‘ O tar
i i jcation: the serial receiver, Rcl at pin 3, an .
data pins for serial communication: t . o o o sight
i i 25,and 0V orground at pin 4.
at pin 19, The power tothe ICis+5VatV,, pin 25, / ¢ o
zggilior?ai control input or output pins whose use as vanous_cchshoaal ftag:::ggwciarzngg
importance for synchronous, rather than asynchronous, communication. These a
connected (nc}in Figure 5186, ' . . . -
The five (remaining pins of the 8251 are conirol péns(.)Fourfotf;hSe;ep,gvrt? ;gﬁumségi :r?i?e .
he {C. One of the
ve 10 select between the two 1/0 ports of : 2
f:irmmand instruction and to read in a status byte. The? om?/\rl g?rt ;Z L;SSG ;zjgf{%;heetg:t;&y;ﬁm
i the recelver. a ‘
the transmitter and to read the data byte from , o e oty
’ * of the computer's conirol bus, resp .
ransfer and are connected to OUT" and IN* 0 _ ‘ .
?U“;i]%t/ D~ input selects between the Command Port (io%ac 1 t:;;ﬁt) ;f’z\igz;zzaszg\jvgﬁgl;e
i i i * t be connected through the 4
input). The Chip Select input, C8*, mus ‘ A e ot
i it i fthe four Device Select puises:
schematic so thatitis activated by anyone o 4 : e Data
"IN " " Port" i we select device code
T “Command Port,” IN “Data Port,” QUT "Data ‘ e e
lg)ourt and device code 11 for the Command Port, then address line A3 can be usedtoactiva
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C/D* pinbecause A3isa logic ¢ when device code 3isg present onthe Address Busanda logic 1
when device code 11 js present,

The RESET input at pin 21 is active high. Qrdinarity it is connected to 0 V except when the
circuitis first powered. Then it must beactivated by raising the pinto+5Vmomentarily. When the
8251 is reset, it takes thae first command output to the Command Porito be & Mode Command. All
subsequent commands are interpreted as instructions. When the Command Port is input to the
computer, the Status Word provides eight bits of information on the status of the iC. The
significance of the bits in the Mode Command, Instruction, and Status Word aregiveninTable 5.3,
We shall examine how these command bytes are implemented in the experiment.

PROCEDURE

STEP 1 Mountthe three ICs on the breadboard with the 8251 between the othertwo and the
741800 nearest the cable connectors. With the +5-V power rail disconnected, wire the circuit as
shown in the schematic, Figure 5.16. Note that the serial output of the transmitter is tied to the
serial input of the raceiver. This connection makes the USART send to itself, Obviously, in a real
situation, these pins would be connected to another USART,

STEP 2 The 555-type timers of the 556 IC have been wired as astable oscillators to
generate the clock frequencies required by the 8251, The trequency connected to the CLK input
at pin 20 of the 8251 should be greaterthan 10,000 Hz. The calcutated vaiue is 14,5800; however, it
was measured at 11,600 due 1o the imrge uncertainty of the capacior value. The frequency wireg
to the TxC and RcC inputs should be arcund 300 Hz for a bit {Baud) rate of 300, The only
requirement is that the QLK frequency be at least 30 times the TxC and ReC frequencies. If you
have an cscilicscope available, you might check these frequencies before proceeding.

Otherwise, if later you find the circuit does not wark, you can use the gated counter circuit of
Experiment 2.5 to check the frequencies.

STEP 3 The BASIO program co
initialize, chack the condition of
part of the BASIC program has
in Step 4. The initiatization
programming the USART

nsists of four parts corresponding to the four activities:
the USART, transmit a character, and receive a character, Each
a corresponding machine language routine that wiil he described
routine consists of inputting the message tc be transmitted and
at lines 20-70. Lines 80~150 form a FOR-NEXT loop, which

TABLE 53 COMMAND PORT BYTES

GQUT AFTER RESET  QUT SUBSEGUENT N
DATA BIT MODE INSTRUCTION STATUS
D7 #Stop bits: Synch. Hunt Data Set Ady
De 11=2,10=11/2 Internal Reset Synch. Detect
01=1, 00 NA.
D5 Even Parity Request ic Send Framing Error
D4 Seiect Parity Error Reset Overrun Frror
03 Word iength: Send BREAK char, Parity Error
D2 11=8 10=7 Enable Re Tx Empty
01=8,00=85.
o1 Bit Rate; Ready Data Term. Ac Ready
Do H=/64 10=/16 Enable Tx Tx Ready

01=/1,00=3yne.

Digital Conversions

i i 100
successively transmits each character in the messé%ge. T(?eicf:}%weg;;g:??ﬁea;!rée:egfozz: 100
i i - -230 reads the
and the subroutines at lines 240-340¢ and 210  cecodas 110
[ flags. None of the error Hags
termine the state of the Error flags and the HeaAdy. (
(Li}eS,i;T. ifan erroris detected, a number is printed o indicate whz_cb error flags were sete.i'l\;zz e‘[rwrhoef
flags are checked and reset if necessary after each cha(rja;:;%r tln ;hecggssviﬁgzehfrrifrece*e Iy
i 110 an o de
ready flags are also decoded and used at lines ecide oo o
transymit a character, If the transmitter is ready (H——‘? and the refoe(:;esrgzgftar:;i;/a(di th?a)ftlags
j i ither is ready, the program
the next character is transmitted. if neither is rea S e oo
i i in thi i i lfboth are set, the program willn
n. it will stay in thisloop untilthe TxorRctlagis se
?i?lpmceed toy input the raceived character at line 130. When zll characters have been
transmitted and received the program will accept another message.
Load the following BASIC program.

BASIC PROGRAM

(for B&W models)
(for Color modeis)
(for B&W models)
(for Color models)

10 REM 123456789 123456789 1234567890
10 CLEAR 32129
20 LET L = USR 16514
20 LET L = USR 32130
30 PAUSE 10
40 LET L = USR 16519
40 LET L = USR 32135
50 CLS
60 PRINT ¢« ENTER MESSAGE”
70 INPUT C$
80 FOR K = 1 TO LEN C$
90 LET L = USR 16524
90 LET L = USR 32140
B 240

igg ggsg =21 AND H = 1 AND G = O THEN GOSUB 210
120 IF G = 0 THEN GOTO 90
130 LET L = USR 16535
130 LET L = USR 32151
140 PRINT AT 1,K; CHR$ L
150 NEXT K
160 PRINT AT 21,0; “MORE? {Y OR N)™
170 INPUT A $
180 IF A$=+<Y"” THEN GOTO 50
190 LET L = USR 16539
190 LET L = USR 32155
200 STOP

Ok ok %k
210 POKE 16531, CODE C$(K)
220 LET L = USR 16530

* ok k¥

210 POKE 32147, CODE C$(K)

(for B&W models)
{for Color models)

{for B&W models)
(for Color models)

(for B&W models)
{for Color maodels)

{for B&W models)

{for Color modeis)
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220 LET L = USR 32146
ok ok ok ok ok ok & ok %k

230 RETURN
240 LET L = L — B64*INT (L/64)
250 LET E = INT (L/8)

260 PRINT AT K+1,0; “ERROR=" ;E
270 IF E>0 THEN LET P = USR 16519
&£70 IF E>0 THEN LET P = USR 32135
280 LET F = L — B*E

{for B&W modaeis)
{for Color models)

290 LET G = F ~ 4*INT (F/4)
300 LET H = ¢ — 2*INT (G/2)
310 LET G = (G — H)/2

320 LET F = (F — (2%G + H))/4

330 PRINT AT K+1,10; “TE=" ;F; ¢ RR=" ;G; “ TR=" ;H
340 RETURN

400 FOR M = 16514 TO 16543

400 FOR M = 32130 TO 32159

410 INRPUT N

420 POKE M,N

430 PRINT M;“ = ;PEEK M, ;

440 NEXT M

‘ STEP 4 The machine code listed below should now be entered using RUN 400. it consists of
six separate subroutines beginning at addresses 16514/32130, 16518/32135, 16524/32140,
16530/32346, 16535/32151, and 16539/32155. These subroutines perform the following
Fespectfve tasks: initial Mode command, clear Errer flags and enabie receiver and transmitter
instruction, read the status word flags, load & character into the transmitter, read a characier from

the receiver, and reset the USART. Study the Comments in the listing to understand how each
subroutine performs.

MACHINE LANGUAGE PROGRAM

DECIMAL  INSTRUCTION

ADDRESS CODE MNEMONIC COMMENTS
B&W / Color
16514/32130 62 LD AN :‘Mode Cemmand Byte: 01 0011 G1
16515/32131 77 N :1 Stop-No Par-8 bits-/1
16516/32132 211 OUT (NLA ‘Load in Command Port
16517/32133 11 N :at Port 11,
16518/32134 201 RET :Return to BASIC for PAUSE
16519/ 32135 62 LD AN ‘Instruction Byte: 00010101
16520/32136 21 N Error reset-Tx & Re enable
16521 /32137 211 QUT {N),A ‘Load in Command Port
16522 /32138 11 N at Port 11,
16523/32139 11 RET :Done with Initialization.
16524 /32140 219 IN AL(N) :Read the Status Word
16525 /32141 11 N dfrom Command Port 11,

Digital Conversions

16526/ 32142 79 LD CA :Put it in register C

16527 /32143 3] LD BN ‘and zero register B.
16528/32144 0 N

16528/32145 21 RET ‘Return BC value to BASIC,
16530/ 32146 82 LD AN ‘Transmit Subroutine:
16531/32147 ¢ N :character to transmit
16532/32148 211 OUT (NLA ioaded into Data Port
16533/32149 3 N :at Port 3.

16534 /32150 201 RET :Done.

16535 /32151 219 IN AN} :Receive Subrouting:
16536/ 32152 3 N :get character from Data Port
16537 /32153 24 JRd ‘Load it into BC by
16538/32154 243 d ‘jumping to 18525/32141,
16539/321565 62 LD AN :Reset USART:

16540/ 32158 85 N JInstruction byte 01010101
16541 /32157 211 OUT (N),A doaded into Command Port
16542 /32158 11 N at Port 11,

16543 /32158 201 RET Back to BASIC.

STEP & Read through the BASIC listing and observe how the machine routines arerelated.
The following REMark statements may help you interpret the action at the indicated line numbers,
Do not load these into the computer.

25 REM  Have to give USART enough time 1o implement Mode command before cutpuiting
instruction command.
75 REM K is the position of the current character in the message.
115 REM F = 1 means that the transmitter is empty; H = 1 means the transmitter will accept
a character; G = () means the receiver has not received a character.
185 REM This subroutine witl infernally reset the USART s0 that when the BASIC program is
run again, the Mode Command will be accepted without having to reset with pin 21,
215 REM  The operand of the LD AN machine instruction at 16531/26732 is the value of the
character at position K in the message.
245 REM L isinitially the value of the Status Word. It is converted to be the value of bits D5-DO.
255 REM  E is the value of the three error flags at bits D5, 4, and D3. it can range from Q1o 7
depending on which flags are set to logic 1.
285 REM Here Fis the value of bits D2, D1, and D0,
295 REM Here G is the value of bits D1 and DG,
305 REM Here H is the value of bit DG, the Tx Ready flag.
315 REM Now G becomes the value of bit D1, the Rc Ready flag.
325 REM  Now F becomes the vaiue of bit D2, the Tx Empty flag.

STEP 6 There are three error flags o bits D5, D4, and D3 as shown in the third column of
Tabie 5.3. The framing error flag is set (to a fogic 1} if the receiver does not detect a stop bit. The
overrun error flag is set when the computer does not read a received character before the next
one s received. The parity error flag is set if the parity bit received plus the number of received bits
in the iogic 1 state is 1 (0) when even (odd) parity is selected.

STEP 7 Apply power to the circuit. Now perform an external reset of the 1C by removing the
iumper wire at pin 21 from the 0-V rail, momentarily connecting it to the -+5-V rail, and then
reconnecting it 1o the 0-V rail.
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STEP 8 Enter RUN. Then input (between the quotes which appear on the bottom line of the . STEP 15 Finally, POKE 16515/32131 1o change the Baud rate tc 1/64: 11001111 = 207,
screen) a message of fewer than 20 characters, As each character is transmitted, it wil) appear Change line 110 in the BASIC program to:
ort the second line of the screen, Before it is transmitted the ERROR flag value will be printed on
the next line atong with the three binary values of the TE (transmitter empty), RR (receiver ready), 110 IFH =1 AND § = 0 THEN GOSUR 210

and TA (transmitter ready)flags. The value ofthe ERROR flag should be 0. The RR flag will first be !

0. then will change 1o 1 as the character is displayed. Now send a message. Observe the flag states displayed as the LED indicates the character bits

being sent. You will likely observe that by ignoring the transmitter empty flag, TE (variable F), the
program runs fast enough at this Baud rate to read one character twice, Restore line 110 and
repeat.

STEP @ It you do not successfully send and receive the Mmessage or if the flags do not all
become s, press the BREAK kay, power down the circult, and recheck your hardware and
software.

. SUMMARY Because of its programmability, the USART is a very versatite and convenient IC 1o

STEP 10 ifyou successfully sentand received, answer *Y” to send a second message. This , use with a computer for serial communication. Where two computers are available, a very goog

time change to graphics mode (press Shift 9) and type in your message. It you are using a B&W ﬁ project is to develop the software to have them communicate serially; at the relatively low Baud

model, the message should appear with inversed {white on biack) letters. You should receive it ‘ rates used in this experiment, a distance of 10 feet between computers should be feasitle. Note,

with inversed letters. If you are using a Color modei, the only characters you can send‘in graphics ' however, that aithough the character code used by the Timex/Sinclair 2000 model is ASCII, the

mode are R, 8, T, and U. You should aiso receive what you send: Answer "N after it has been Character code of the other modeis is not. Also, the same clock should drive both units, and the
received. Ground rails of the two terminals must be sonnected.

STEP 11 The Mode Command can now be changed to transmit seven-bit characters
(D6-DO) instead of eight bits as originally programmed by ENTERing the direct command

POKE 16515, 73 (B&W)
POKE 32131, 73 (Color)

and then ENTERing RUN, Verify the value 73 from the first column of Table 5.3,

STEP 12 Repeat Steps 9 and 10, With a B&W model, you should observe that white on biack
characters are received as black on white, This g bacause the code value forthe inversed video

Color mode!, the graphics characters R, S, T.andUarethe only four that are printable characters [
when 128 is subtracted trom their codes; you should receive the characters L' 8 and 8, i
respectively. :

STEP 13 Repeat Steps 11and12by programming the Mode Command word for six and five
bits per character. With a B&W modsl, verify that when the character FASTIShIfF) {=11100101 )
isicaded into the transmitter that the characters received and displayed are 8 {=00100101 )and
the graphics character on the five key (=00000101 ). respectively. Hyou are using a Color mode!,
verify that when the character RESTORE (Extended §) (=1110010%} is transmittad that the
characters received are o (=01100101), % {=00100101 )oand ? {=00000101). (The Guestion !
mark is printed in defauit because the codes between 0 and 31 are nenprinting in this model.)

STEP 14 POKE 1651 5732131 with the Command Mode byte to give two step bits, no parity,
eighi-bit character length, and a divide-by-1 Baud rate: 11001101 = 205. RUN and enter any :
message. Observe the LED on the serial line. You should see it dim each time a character is

transmitted. Now POKE 1851 5/28716 with the Command Mode byte to send/receive at 1 /g of

the Tx/Rc elock. The byte is 11001110 = 208, The rate will now be about 18 bits per second or

slightly tess than two characters per secong. When you transmit, the LED will clearly show the

iogic levels change asthe bits are transmitted. Cbserve the flag states displayed on the screen as

the character flashes the LED.
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ANALOG-TO-DIGITAL CONVERTERS

One of the more useful tasks of microcomputers is to acquire data. In most cases, data
occurs as an analog signal or voltage (that is, a signal or voltage that varies in a
continuous fashion such as the mercury in a glass thermometer rises continuously as the
temperature increases). Analog data can vary relatively slowly such as that produced
by a temperature sensor and gathered over long periods of time, or they can vary
relatively fast, like that produced by current flowing in an electrical circuit at the
instant of switch on. Digital microcomputers can only accept data in digital form so we
must transform the continuously varying analog data into the discrete steps of digital
data. We have already seen how the reverse process is accomplished using digital-to-
analog converter integrated circuits.

There are several techniques used to convert an analog signal to an equivalent
digital signal having a binary value proportional to the analog voltage. We shall
consider the technique known as the successive approximation method. In this
technique, the analog voltage signal is compared in a series of steps to digital voltages
having values which are exactly one-half of the previous step. For an eight-bit
converter there are eight steps. Figure 6.1 illustrates the first four steps in a successive
approximation conversion. It starts with the most significant bit in the first step and
sets the digital voltage to one-half of the voltage range of the converter. If the analog
voltage is greater than the digital voltage, then the most significant bitis set to a logic 1;
if it is less, then the bitis set to alogic 0. The digital voltage s stored if the bitis a logic 1.
For the second and subsequent steps, one-half of the digital voltage of the previous bit
is added to the stored value of the digital voltage and compared to the analog voltage.
For each step that the digital voltage is greater than or equal to the analog voltage, the
bit value is set to a logic 1 and the voltage weight is added to the stored digital voltage.
One distinctive advantage of the successive approximation method is that the time
required for all conversions is the same and does not depend on the magnitude of the
analog signal. The binary weight of the voltage of each bit per volt of the full scale of
the converter’s range is:

Anatog Conversions

A 15/16
110 718
1
- 13/16
11010 3/4
A 11/18
110
518
1 9/16
1]ojofo .,
-1
— 7116
110 38
e 5/16
11010 174
a 3/16
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D7 D6 D5 D4

Figure 6.1 Successive Approximation Diagram,

MBS LSB

Binary Digits: G7 D6 D5 D4 03 D2 B DO
Voltage Weight 5000 2500 1250 .0825 0313 0156 .0078 0039

What if you wish to convert an analog voltage of 7.30 V into eight-bit digital form?
You could alter the LSB weighting t00.039 V so that the total range now becomes 10.00
V, but in so doing the resolution of the converter is reduced. Whatis meant by the term
resolution? It means just how closely the Analog-to-Digital Converter (ADC) can
represent an analog voltage in digital form. For example, the 5-V full scale converter
could not distinguish clearly between two analog voltages, say equal to 1.668 and 1.675
V, because its limit of resolution is 0.02 V and these values differ by less (0.007 V) than
the resolution. If it is important in your measurement situation to achieve higher
resolution and an extended voltage range also, then you must use ADCs that provide
more bits. For example, a 5-V, 12-bit ADC will resolve down toa sixteenth of 0.02V
equal to 0.00125 V or 1.25 mV. The LSB voltage weighting is now equivalent to 1.25
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mV with. the MSB voltage weighting still being equivalent to 2.56 V. Whenitis realized
that an eight-bit converter can achieve a 1 in 256 resolution or an accuracy of 0.4% then

b.esfdes the power and data bus connections, a clock derived from an external RC
timing circuit, and two Device Select Pulses: one to start the conversion and the second
to read the data by enabling the three-state data outputs once the conversion is
completed. A third output control pin is available on the chip, referred to as the

cs* 104, D - 120 V+:Vref
RD* 2 [ E 719 CLK R
WR* 3 [] © ',331800
CLKIN 4[] L_i_s,f,s 117 D1
INTR* 5 [H A HalH e o2
Vin + e[:} D-i— L {715 D83
Vin— 7 [ Efl OefHS b o4
AGND 8 ¢ _g_e.;\gjm D5
Vref/2 § [ - LG '\\-Ej12 D6
D GND 100 | . SH11 D7

Figure 6.2 Schematic of the ADC0804

—————
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TABLE 81 MACHINE LANGUAGE ROUTINE FOR ADC
START, LD C.DELAY ‘A timing defay byte is

N doaded inte register C.
LD HLSTORE  HL holds pointer address
Lo N ‘where convetted data will
HiN ke siorad,
QUT A(N) ‘Start ADCOBO4 conversion.
N Device code for ADC0804
WAIT, DEC C By decrementing C and
JRNZWAIT Jjumping around losp until
d .G is zero we wail.
IN {A)N ‘Input data from ADCOB04 latches
N :Device code for ADCO804.
LD (HL)LA ‘Load memory with data.
RET ‘Return {o BASIC.
STORE, NOP Data storage jocation

The ADC0804 has been specifically designed to interface readily with microcom-
puter systems. In the case of the Timex/Sinclair which uses a Z80 microprocessor, the
necessary control signals are simplified by comnecting IN*® to the IC’s RD® pin, OUT®
to the WR® pin, and a Device Code connected to the CS* (Chip Select) pin. The chip
internally ORs the Device Code with the appropriate control pulse (OUT*® or IN*) to
start the conversion or enable the three-state data buffers, respectively. Which way
round would you place the control signals to start the conversion and then read in the
latch contents to the microcomputer using Device Code 37 You should use (QUT 3)°
in your program to start the conversion and (IN 3)® to enable the three-state buffers
and read in the contents of the ADC data latches. A simple machine language program
is listed in Table 6.1, which could be used with the ADCO0804 to input a single data
value.

This program would have to be combined with a BASIC program as in previous
cases with the converted value of the analog input voltage being stored at the memaory
location labeled STORE. Do not forget to allow an extra character in your REM
statement to leave this memory location free for data. By using PRINT PEEK in your
BASIC program, the contents of the memory location can be displayed on your TV
screen in decimal form. We shall leave further description of the A-to-D converter
software and hardware to the experiments,

SIGNAL CONDITIONING

When we described the conversion of an analog signal to a digital value we assumed
the ADC could read the signal from our measuring device. That is, we figured that the
analog voltage would be between 0 and +5 V and that a resclution of 0.02 V was
sufficient. We have seen that the way to improve the resolution is to use an ADC that
converts to more than eight bits. But what about an analog signal that ranges between 0
and only +1 V? Besides, where do we obtain the analog signals in the first place?
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These two guestions are closely related and we shall spend the rest of this chapter
trying to answer them.

Transducers It is obvious that we need an electrical signal in order to be able to

convert that (analog) signal to a digital value. Many of the interesting measurements
are not electrical. For example, sound, temperature, pressure, length, light, force,
motion, magnetic field, and strain, to name a few, are definitely not electrical. All of
these quantities are continuously variable and are therefore what we have been calling
analog signals. What we need are devices that can translate these signals into electrical
signals which vary in an exactly analogous manner to the quantity of interest: in other
waords, the electrical analog of the signal. This is where the term analog electronics
originated. The devices we are looking for are called electrical transducers.

There are two types of electrical transducers. Those that convert some physical
property into an analog electrical signal are known as sensors, and those that convert in
the opposite direction, that is an analog electrical signal into some other physical
phenomenon, are called actuators. Can you think of the electrical transducers for
sound? A microphone is a sensor and a loudspeaker is an actuator. This raises another
point about transducers that has to be considered. Some transducers can only detect
changes in a physical property while others can detect unchanging or constant values
of the physical property. The former are dynamic transducers and the latter are static
transducers. For instance, a microphone really measures the changing pressure of the
air created by sound. Itis a dynamic pressure transducer; you cannot use it to measure
a static pressure such as atmospheric pressure. To meastre a static pressure weneeda
transducer that can measure the force acting on a specified area.

Up to this point we have said that electrical transducers convert a nonelectrical
physical property into an electrical signal. We have not specified what kind of
electrical analog signal. There are several that are possible. An analog voltage is
perhaps the most obvious electrical signal, but transducers are made that also convert
to analog resistance, capacitance, inductance, current, and a few other electrical

properties. By means of various circuits, these properties must first be converted to
voltages in order to use an analog-to-digital converter. The more common transducers
are listed in Tables 6.2 and 6.3 which give examples of sensors and actuators in terms of
the physical property and the corresponding analog electrical property.

TABLE 6.2 COMMON ELECTRICAL SENSORS

PROPERTY VOLTAGE CURRENT RESISTIVE CAPACITIVE INDUCTIVE
Mechanical Piezoslectric Swilch Strain gage Pressure Generator
head Variable
transformer
Therma/ Thermecouple, Diode RTD ? ?
Bolomater Transistor Thermistor
Light Photocell Photomuitiplier  Photoresistor ? ?
Photodiode
Phototransistor
Magnetic Magnelorestrictor  Halt effect ? 7 Search coil
Chemical Electrode ? Conductivity Dipolmeter Susceptibility
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TABLE 6.3 COMMON ELECTRICAL ACTUATORS

UCTIVE
PROPERTY VOLTAGE CURRENT  RESISTIVE  CAPACITIVE  IND

i i ? ? Motor ’
Mechanical  Piezoelectric Switch ? Sotengsd
? ?
Thermal Thermopile ? Heatir ] i
Light ? Lamp ?
’ LED . , )
Magnetic ? Coil ) ? i i
Chemical Clectroplate ?

. ; \ a physical property
it is possible to convert a p

Now that we bave seen hO‘: we aré) faced with the fact that most tran}s(;it;cer;

’ . It would pe 0
will not produce large enough voltages to span the r?nge (f)foﬂ(;; Q/Da(;dlt}?e;n find the
little value to have a 0 to 5 V range with a rels ?Iuhionf(c)) 1()AV If that were the case,

; ; i evel of 0. . "

Itage to provide a maximum signa . In addition
:;amﬁ;w;g‘;?ai vgaiuespwe could obtain would be the numbers froT Oltfoasn drfche wirs
et?l' d roblem, we also have to consider that the tra‘."sdlfcer e rious electrical
o T }isné) the sigr;al from the transducer are subject to noise pickup Sizulf our signal is
:::)itzges) from the surroundings, like static _poas ar‘ldnzluilt]:e{;? i?n;aresséd on the signal.
oise pickup canrepresent a sizable sign . ical means
Sm';ﬂ tﬁﬁ:e&;i:se reglaining problems, we shall descrﬂf)e some ;f the p;i(jitfsalog%o—

that {():an be used to condition a signal and make it possible to achieve g

measurement to an analog voltag
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ing i ifying s oltages
Transistors Most of this signal conditioning ;nvolvtas‘ arlnphfyeliger:;mgltihzr for%n )
til they are large enough to be handled by gnaif)g—to-dag;t.a converter: ‘The er forns
of signal ditioning involve current amplification and noise redut':tlon. > mention
et 1O?ficgation means that amplifiers are involved in this process o S]i‘ifg'er
o thf') YVOFd amg tlhe first type of amplifier we will consideris the transis;tor ampli 1{);;
cond}t}omngf%m our description of transistors to one type oni|y, tl.le 1\:131\1[1 c:onlair)n{mt
We‘ oy Coé] mefine the frequency range of operation of our circuits t(? be 0}\: dt ot
g(?éltlze;fzagn 2}?12 way we can make a number of simplifying assumptions abou
ior i ityi ircuits. '
Opel'atiOHPgéf :hilzzz?tzilizO; ;?eihtf;];}lginil;fievice. Its terminals are called the e;nartttzre
e drt;e collector. To get some idea how a transistor operates,l consi dg:u e
ﬂ'le bf?Se; n i Figure6.3. As with the integrated circuits that we have discusse ﬁ{m
Cll:C‘iit lShO";:ﬁ ?1 nii circz;it‘s‘ always need to be turned on. Trans:st(?r§ areno e.xtc:;apThe
o P_Oiﬂt ) Lf) . e they ‘tend to be the major element inside digital circuits). he
o th]:S m]? ( ?Sa}?ﬁjd on by applying a pesitive voltage +V¢cto the collec‘tor tex:g: nal
o the tranststm CSo far so good because this is just what we have been. dfm;fl.g ;w o
(’)f e traﬂSiiftOf-_t chips. But that's not the whole story because the digxt?1 in e%:mits
2:?:5:? tsgi;;rﬂfl}]lich Eo.ntain transistor amplifying circuits have had their ¢

d hy ate 833 “{ ele til(:a CY WW W V oW y lllSIl()tOnly
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esigne at wek e
gowgt() switch the transistor on but also how to design it into an e

s mi i ear, The
produce an amplified signal. This is not such an easy task as might first app
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4 -0 Voe
R(C) )
0 OUTPUT
RB1) 3 c
it B B
1§
SIGNAL @ R(B2) 3 E E}e o/C
SOURCE (bottor)
R(E) TC(E)
- - © GND

Figure 8.3 NPN Transistor Circuit,

transistor you buy from your local store differs, sometimes significantly, from a
transistor of the same type which your friend bought from ancther store. So how can a
circuit‘ be designed to take into account such large variations? Well we can try by
adopting a number of empirical rules which work quite well for most silicon NPN
transistors which vou wish to use as amplifying devices.

Just before we proceed, are you quite sure what an amplifier is? Probably, even if
you are young or older, because everyone has heard the amplified sound from
someone’s hi-fi system at some time or another (any advances on 2 aM. in the
morning?}. The electronic amplifier (2 number of transistors) enlarges the small
voltages produced by the tone arm on a record player, or magnetic pickup on a
cassette recorder, to much larger voltages which can drive the magnet coils mside
those very large loudspeaker boxes.

So back to the transistor amplifier: the empirical rules which can be used with some
success are as follows:

1 Choose a transistor based on the amount of current required by the device
connected to the output. For example, an analog-to-digital converter would
only require a low power transistor, say less than 50 mA, because the con-
verters usually have a relatively high input impedance. Should you have a
digital-to-analog converter which has to drive the coils of an electrical motor,
you may have to choose a transistor which passes a large current, say 5 A, to use
in your amplifying circuit.
Next choose a collector resistance so that the voltage drop across the resistance
will be about one-half the supply voltage at the expected current drain of vour
amplifier. Again, for example, assume that you wish to operate the transistor
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at a current level of 5 mA, from a battery supply {V ¢c) of 12 V. Then by using
Ohm’s Law, the value of resistance R{C) can be calculated as follows:

R(C) = Vie /21 = 12E3/10 = 1.2 Kohm

3 Calculate a value for R(E) that will allow for about a 1 V potential drop from
the emitter £ to the ground line. A preferred value of 220 ohms should be
reasonable. Choose C{E) to be from 10 uF up to 47 uF if you can afford it.
C(E) and R(E) are used to stabilize the circuit operation against thermal
runaway.

4 'The values of R(B1) and R(B2) can now be chosen. The resistors themselves
should be of the order of ten times the size of R(C) and then must be chosenina
ratio that will put the base potential about 0.6 V above the emitter potential.
So if the emitter potential was about 1 V, the base potential needs to be about
1.6 V. All we need to do is select R(B1} + R(B2) to be about 15 Kohm into a
ratio to drop the 12-V supply line down to 1.8 V at the base. This turnsoutto be
a ratio of

104/1.60r65:1 (10.4-+16=12)

R(B1) could then be chosen close to 13 Kohm and R(B2) chosen close to
9 Kohm. Preferred values of resistors would probably be 12 Kohm and 1.8
Kohm.

5 Switch on and check to see that the voltage at the collector C is about one-half
the supply voltage, for instance 4.5 V to 6.5 V might be a suitable range. Mea-
sure the voltage between the base and emitter which should be closeto 0.6 V.
There is a direct relationship between the voltage drop from the base to the
emitter and the voltage appearing at the collector. Should your transistor be
so far from the normal that your amplifier cannot approach any of our empiri-
cal rules then you need to fall back on the last resort! Yes, you guessed it, re-
place R(B2) with a variable resistor and adjust it until the voltages agree with
our rules! You can always remove it from your circuit later on and measure it
with an ohmmeter and then replace it in the circuit with a fixed resistor closest
to its value.

So now you have a transistor amplifier turned on and adjusted to provide
amplification. The amount of amplification is governed to a certain extent by the value
of R(C); by making R(C) larger you increase the gain (amplifying factor or
amplification} of the transistor amplifier. But there is a limit to the amount of the
increase, which is dependent on the size of the signal you wish to amplify.

The amplification occurs on a small voltage input signal applied to the base which is
output as a much larger voltage signal at the collector. The ratio of the two signals is
referred to as the gain of the amplifier, where the voltage gain

A(V) = Quiput Voltage/Input Voltage
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Let us assume that the input signal is varying with time, say a sinusoidal waveform.
In sound such a waveform can be produced by whistling or singing a pure note. Many
electronic signals are sinusoidal in nature. The sinusoidal amplitude is often defined by
measuring the peak to peak (P to P) amplitude as shown in Figure 6.4. An incoming
signal of amplitude 20 mV P to P to an amplifier of gain 100 times will produce an
output signal of 2 V P to P. This is what we term voltage gain.

Transistors are often described by their current gain characteristic as well, which
we can define here as

A(ly = Cutput Current/input Current

The output current would be, in the case of the sinuscidal input current, the varying
current component in the collector resistor, R(C). This varying current can be
represented by the term delta I{(C). The varying current signal producing this change
appears in the base circuit of the transistor amplifier and so can be designated delta
I(B), the change in the base current. The current gain, A(I), can now be written as

A(l) = Deltz I{C)/Delta }(B) = Beta

Bela is called specifically the common emitter current gain of the transistor and also is
equivalent to another term often used by manufacturers and engineers called h(FE).
Typical values for beta range from 50 to 300.

We haven't spent any time talking about the different configurations of transistor
amplifiers, but there are two other amplifying circuits different from the one we have
described called common base and common collector (or emitter follower) transistor

+V
—5
0 TIME
-V
PEAK TO PEAK

Figure 6,4 Sine Wave,
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amplifiers. (It is not intended that this be an exhaustive text on transistor electronics, so
we suggest that you look up additional texts to follow this matter in greater detail.)

The common base transistor uses the emitter lead as the input terminal and retains
the collector lead as the output terminal. The current gain of this amplifier
configuration is notable, namely

A{ly = Delta |(C}/Delta {E) = Alpha

Alpha is the current gain of the common base transistor amplifier. Typical values for
alpha range from 0.9 to 0.99.

The common emitter amplifier circuit has another interesting feature called phase
inversion, which is of use in designing digital electronic circuits. This occurs when a
rising voltage on the base causes a falling voltage on the collector of the transistor, and
vice versa. The collector is in opposition to the base. Two waveforms are said to be in
opposition when they are 180 degrees out of phase. The transistor amplifier is called
“common emitter” because the emitter lead E is common to the circuit containing the
mput signal and to that containing the amplified output signal (see Figure 8.3).

Another aspect of signal transfer often overlooked is the fact that there are two
cables or wires connecting the signal source to the amplifier and two wires connecting
the amplifier to the output device. One lead is oftenreferred to as the live lead because
its potential fluctnates with respect to the second lead which is usually referenced to
ground potential. In many instances the second lead is the earth shield around a central
wire conductor as in coaxial cables which are much preferred for transporting
electrical signals over long distances. By earthing or grounding the external braiding
vou minimize electrical interference with the inner conductor. Nevertheless, you
always need the two leads even though one of the leads (the ground) is common to
both the input and output signal wires.

The only components in Figure 6.3 that we haven't yet explained are the coupling
capacitors C(C}. These capacitors are used when the signal is varying with time to
couple the signal into (and out of) the amplifier without the de (direct current)
voltages being able to leak through. Remember, capacitors do not allow de to pass
through but they do allow ac to pass. In the case of dc amplifiers the coupling
capacitors have to be dispensed with and the transistor circuits modified to take
account of temperature drift of the transistor characteristics. In our approach,
amplification of dc signals can be handled by integrated circuit amplifiers, op amps,
because of their very small drift characteristics. This will be treated in the next section.

In signal conditioning you will tend to find transistors being used when output
signal currents need to be amplified significantly (of the order of amps) to drive heavy
electrical machines, motors, robot arms, etc. We have already seen one such example
used for the stepper motor interface discussed in Chapter 5.

Transistors in Digital Circuits We have already discussed using the transistor as
an amplifier (That is, one where a varying input signal is made very much larger asa
varying output signal). The transistor, however, can be operated in another mode
apart from that of amplification, that is, it can act as a switch.
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If you think back to the rules we laid down for the transistor as an amplifier, one of
them was that there had to be 0.6 V potential between the base and emitter for the
transistor to operate as an amplifier. You can think of this base emitter potential asa
controlling potential, because if the potential difference is reduced below about(.4 V
you will find virtually no current flowing through the collector resistor R{C) {refer to
Figure 6.3). Using Ohm’s Law on resistor R(C}, if there is no current flowing through
the resistor there can be no potential drop across it. If there is no potential drop across
it then the collector end of the resistor must be at the same potential as the power
supply end. In other words the collector of the transistor is at the high potential of the
power supply Ve and the transistor is in fact turned off.

If we now increase the potential between the base and emitter to about 08V, we
find that the maximum current allowed by the circuit components is flowing through
R(C) and of course the transistor. Under these conditions the voltage drop across R(C)
is a maximum or, in other words, the collector is at the minimum potential allowed by
the circuit; that is, it is at a low potential and the transistor, we say, is full on. The
potential is usually very close to 0 V. In effect then we can make the transistor look like
a switch by applying voltages less than 0.4 V to the base to turn it off and greater than
0.8 V to turn it on. You could use a square wave input signal to the base, through a 1-
Kobm resistor, of amplitude 5 V to switch the transistor on and off continuously.

Transistors can be combined to produce digital gates such as the NOR gate shown
inFigure 6.5. If Voo = +5V = logic 1 state and GND =0V = logic O state, then the
truth table for this circuit is:

INPUTS  QUTPUT

rﬂN\N—O Vee
-0 QUTPUT Q
INPUT A
INPUT B
47 -0 GND

Figure 6.5 Transistor NOR Gate.

Analog Conversions

OUTPUT
D

Figure 6.6 Three-input AND Gafe.

This is identical to the truth table for a NOR gate. The natural characteristic of the
common emitter amplifier of inversion and amplification enables them to be used as
NAND and NOR gates as well as AND and OR gates, The current amplification of the
transistors allows the output Q to drive many more amplifiers, each being a part of
another gating circuit. You may now begin to understand the reasons for some of the
terms used in digital IC work.

Further development of transistors for use in digital gates led to the manufacture of
multiple emitter type transistors such as the three-input AND gate circuit shown in
Figure 6.8. The inputs A, B, and C are either at 0 V or V i volts. The output D will
appear as in the following truth table:

INPUTS QUTPUT

A B C D
0 0 o0 0
1 0 0 0
0 1 o0 0
11 0 0
11 1

Whenever any of A, B, or C inputs are low, the base is at a much higher potential than
the emitter so the transistor conducts heavily {switched on) and the collector voltage is
low (D). Only when A, and B, and C are at +5 V will the transistor turn off and the
potential at the collector rise to +5 V (high). This again indicates how multiple input
gates can be constructed.

Operational Amplifiers This term has been used for many vears to describe
electronic amplifiers that have very high gain (say, in excess of 1000 times). Inmodern
times transistor amplifiers have been fabricated into integrated circuits often refen:ed
to as linear integrated circuits. The symbol of such a circuit is given in F igure 8.7. The
amplifier has two inputs, labeled — and +, referred to as the inverting input and
noninverting input, respectively. The other single lead is the output lead. These
integrated circuits are characterized by very high open loop gain, usually greater than
10,000 times, are manufactured in DIL {DIP) packages, and have very low drift and
high input impedance {draw very little current from the input signal).
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INPUTS
T

Figure 6.7  Linear Amplifier,

OUTPUT
N

Discussion of how these circuits can be made into amplifiers can begin by
considering the ideal operational amplifier {op amp). This ideal op amp has the
following features: infinite open loop gain, infinite input impedance, and zero drift,
To see how such an amplifier can produce a voltage gain consider the circuit shown in
Figure 6.8 called an inverting amplifier.

Based on the ideal op amp characteristics, an input current K1) will flow through
R(I) then R(F) to the output, due to the fact that the input resistance is infinite. Also if
we assume that the gain of the amplifier is infinite, then the value of V{I) must be 0,
(otherwise there would be an infinite output voltage). The value of V(I} in practice
approaches 0. The voltage gain of the closed foop is:

V{out)/V(in) = A(V) = —R(F)/R(})

The negative sign indicates a phase inversion between input and output signals as was
explained with the common emitter amplifier. The term closed loop refers to the use
of the feedback resistor R(F) closing the loop from the output circuit to the input
circuit. When precision resistors are used for R(F) and R(I) inanop amp whose gain is
greater than 1000 times, the above relation can provide accurate predictions of the
voltage gain of the amplifier—something that has been difficult to predict accurately
with discrete transistor amplifiers.

When an amplifier is required with a high input impedance and no phase reversal
between the amplified output signal and the input signal, then the noninverting
amplifier should be used with the signal applied to the noninverting + input.

R(F)
R(1) =Wy
O M _
V(in)I Vil I el
+ : V{out)

I 2

Figure 6.8 Inverting Op Amp,

Analocg Conversions

A further op amp circuit which can be very useful in signal conditioning
applications is the voltage follower illustrated in Figure 6.9. This amplifier is in fact a
unity gain amplifier and requires no input or feedback resistors. The output waveform
is an exact copy of the input waveform showing that there is no phase reversal between
the input and output signals. The circuit characteristics exhibit high input impedance
(draws negligible current from input signal) and very low output impedance
(produces significant current in the amplified output signal). Such amplifiers are
useful as current amplifiers or buffers.

In practice many op amp chips are operated from dual ( bipolar) power supplies of
around +12 V. Such chips would not be practical to use in our experiments with the
Timex/Sinclair because of the need to provide additional power supplies. More
recently, however, single voltage op amps have been produced which can work from
+5 V only. We have obviously seized on this opportunity and carried out any signal
conditioning needed in our experiments with single voltage op amps such as the
LM358 which features high input impedance, very small drift, and high gain. They are
used in the experiments involving strain gauges. They could be used in any
experiments involving transducers which output only small de voltages and very small
currents, such as thermocouple thermometers.

We conclude this survey on signal conditioning in relation to op amps by describing
their ability to reduce electronic noise present in input signals. Thermocouples are
transducers which are sensitive to noise, and, by incorporating them in an op amp
circuit, we can minimize the noise present by the inherent common mode rejection of
the differential input op amp circuit shown in F igure 6.10. The thermocouple
produces only a small potential per degree change in temperature of about 20
pV/Celsius degree. Using an amplifier of gain 1000 times this voltage can be amplified
to a usable level. With such high gains, however, the noise is amplified the same
amount as the signal. If the noise in the signal contains main frequency “hum,” this
alternating noise signal is present in both signal wires (the + and —) at the same time
so that amplification of the noise takes place equally but with opposite phase. The
signal on the other hand is producing a difference voltage between the inputs which is
amplified with the — signal having been phase reversed. This adds to the -+ signal at
the output. The Common Mode Rejection Ratio (CMRR) of a circuit is defined as:

CMRR = Differential Gain/Common Mode Gain

V{out)

+
V(in)

Figure 6.3 Voltage Follower Cp Amp.
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R(2) 100K TAU(seconds) = R(ohms) * C(farads)
R(1) i is the fime it takes for the voltage to reach 63% of its full value (actually 1 — 1/& whers e is the
O -AA, e, base of naturai fogs; e = 2.71828),
THERMOCOQUPLE In this experiment the Timex/Sinclair will be used 1o control the switching on of a circuit to
JUNCTIONS 100 Each e ) charge a capacitor through a resistor, The computer will store converted values of the analog
: O AR + : voltage developed across the capacitor as the charging process proceeds, The charging
" R(3) V(out) ] process should be exponsntial and a tabie of acguired vaiues stored in memory can bedisplayed
' ~a ARA, e ) on the video screen, The circult used to charge and discharge the capacitor is similar o the one
R(4) 100K é usedin Experiment 4.3 for wrninganLED onandoff and is repeated in the schematic, Figure 6.11.
PROCEDURE

Figure 6.10  Differential Input Cp Amp.,

STEP 1 Wire the circuit as shown in Figure 6.11 making sure that the power is disconnected

The differential gai h : : between the Timex/Sinclair and the +5-v power rail. Resistor values are not critical, gnd values
gain can be caloulated from the ratio of the two resistors, R2/RI. The clase to 4.7-Kohm or 5.6-Kohm resistors could be used in place of the 5.1-Kohm resistors. You

folmr:fon mt(?de gan: caz;l be On{l)easured directly with a voltmeter. Common mode will need space for three integrated circuit chips, s0 mount them as close to the cable socket as
€jection ratios greater than 100 are acceptable. possible so that a fourth chip can be added later, Note that the ditferential input to the ADC0804
has been made singie ended by grounding the negative input a2 pin 7.

STEP 2 Two device pulses are required to drive the 74L874 D latch, and these are derived

EXPERIMENT 6.1 e
from the 741832 Quad OR Gate as shown in Figure 6.11, ‘

ANALOG-TO-DIGITAL DISPLAY OF RC CHARGING WAVEFORM

COMPONENTS 1 * 740532 Quag Two-Input OR Gate
1 ¥ 741874 D fatch 1C oV é‘
i " ADC0804 Analog-to-Digital Convertar 2 <

1 *10-Kohm resistor L 18
1" 5.1-Kohm resistor 3% 00
1" 0.47-uF capacitor IN* 2 L o1
1 * 150-pF capacitor 3 16
OuUT * : e D2 3
For opti i : }
- Og&c&gié gzzond part of experiment: 12 1 X s o )3 i
, o : 9 14 |
17 AD558 Digital-to-Analog Convertar 13 x— 0804 b4
. 4 5.1K 6 13
DISCUSSION  When current flows from a constant voltage source through & resistor and inic a 14 S 5 T 7 12 P :
capacitor, the alectrical charge is stored in the capacitor. Consider the analogy to a water system : + 5V —— Q 0.47uF D6
supplying water at a certain pressure {voltage) through a pipe (resistor) connected to closedtank : Ct19* U 8 1 D7
{capacHar). When a valve on the pipe is opened (a switch in the circuit is closed), water flows ' ‘l;—. C @
through the pipe at a certain rate, gailons per minute {current}, determined by the size of the pipe 10 q
{resistance). The initial pressure in the tank is G but stants 1o build up as the water {charge} is ' 1 J7 4 19
stored. As the pressure in the tank increases the rate of fiow decreases until the pressure in the 4 9 8 HED 10K
tank equals the pressure of the water supply and the water stops flowing. In the electrical circuit,
the analogous situation corresponds to charging a capacitor. Because the rate of charging at a
given moment is proportionai to the amount of charge stored at that moment, then the increase i =
{or growth) in voltage with time depends on the percentage of the total change. Such growth ' l 150 pF
processes are exponential. in such processes, the time requiredto charge the capacitor uptothe
voltage of the supply chviousty depends on the values ofthe resistance and the capacitor. A time ; ;
consiant defineg ae Figure 6.11  Experiment 6.1A Schematic.
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{
STEP 3 loadthe following BASIC program: /32135 125 Hi N wor 32154,
16520/ 32136 219 N (NLA ‘Davice code 19 sets Q high
10 REM 123456789 123456780 123456780 123456789 123456789 16521 /32137 19 N ‘to charge capacitor,
123456789 123456789 123456789 123456789 123456789 16522732138 211 OUT A,(N) ‘Device select puise 10 begin
123456789 123456789 1234567890 (for B&W models) ggggj j gg:ig 1 g SEC . igc?ve*isiﬁn of “;? ADC.
LDelay ioop: walt for
o rast o 8o iy e E SN e clmes
f :Loop 1o imes,
i S0 LET L = USR 16514 (for B&W madels) 16527 /32143 14 LD CN Yes. Restore G oount
- 30 LET L = USR 32130 {for Color models) 16528 /32144 20 N
40 CLs 16529 /32145 219 IN (N).A ‘Read ADC
50 FOR A = 16538 T0 16616 STEP 4 {for B&W models) 16530/ 32146 3 N from Port 3.
50 FOR A = 32154 TO 32232 STEP 4 (for Color madels) 16531 /32147 119 LD (HL)A Store converted value in memory.
60 PRINT; TAB(8 — LEN #“A" }; PEEK A; TAB{16-LEN “ (A+1) 7 ), 16532 /32148 35 INC HL ‘Point to next file focation.
PEEK (A+1); TAB (24 - LEN « (A+2)” }: PEEK {a+2); TAB 16533/32149 16 DINZ d s B=07
TAB (32 —LEN « {A+3) 7" )}, PEEK (A+3) 16534 /32150 243 d :No. Jump to 18522/32138.
70 NEXT A 16535 /32151 211 OUT (N)LA Discharge capacitor for
90 PRINT ALT. IN” 16536 /321 52 19 N ‘the next run
18537 /32153 201 RET Return to BASIC
- : . 16538 /32154 FILE START ‘The first location in the
Note line number space left hore, data file
150 STOP STEP 5 inspect the two programs above 10 see just how they interact. Line 30 calls the
160 FOR M = 16514 TO 16537 (for B&W models) machine iangﬁa%e program \.ﬁrhégh stasts at memor\j location %g514/32139. The machine
igg i‘ggU}\r& ; 32130 TO 32153 {for Color models) language program initializes the BG register pair in one three-byte instruction with register C

holding the timing byte for the time delay routine and register B holding the number of data values
to be coliected by the converter, Register B was used because of the Z80's special instruction
DJINZ which automatically decrements register B and tesis the zerc flag. It uses a two's
complement negative displacement to jump back to do another conversion and saves one byte of
code, namely DEC B. Note that the coda usedin the above example is relocatable code—thatis,
the program could be run in any part of available W/R mermory.

The program then initializes the HL register pair to mark the peginning of the area of W/R
memory reserved for data and labeled "L E START.” Line 16520/32136 charges the capacitor
using a device select pulse and then starts the converter aitowing for a time delay 0f 20 * 14 clock
cycles = 86,15 usec before generating a further device select pulse at memory location
1685629/32145 1o input the converted data. The final device select pulse at memory location
16535/32151 discharges the capacitor ready for the next run.

180 POKE M,N
190 PRINT M; “=» ; PEEK M, ;
200 NEXT M

it your Timex/Sinclair has 2K of W/R memory then the pregrams above will fit into the memory
space. However, if you have only 1K of W/R memaory then the few suggestions madein Chapter 2
should enable you to load the software without tec much difficulty.

STEP 4 The following machine language routine is loaded in the usual manner by
ENTERing RUN 160 and inputting the decimal codes for the routine,

MACHINE LANGUAGE PROGRAM -
STEP 6 Reconnect the bower to the circuit and check that no integrated cirouits are

DECIMAL  INSTRUCTION significantly overheateg, Start by ENTERIng RUN. After a short time four columns of acquired

ADDRESS CODE MNEMONIC COMMENT data will appear on the video screen. The_téme constant of the ‘ﬁc circu;‘_t cannow be determined.

To make an absolute determination, the time to make successive readings has to be calculated
B&W / Color using the total number of clock cycles in the toop from 16522/32138 to 16534/32150
16514/32130 1 LD BC NN {dependent on the value put inte register ©) muiltiplied by the time for one clock cycle (0.3077
16515/32131 20 Lo N ‘Register C holds timing byte usec), For example, look at your table of values and determine the maximum digital value to

16516/32132 79 Hi N ‘Register 8 holds count of evenis which the capacitor charged. Assume that the charging process was exponential so after cne
16517 /32133 33 LD HL,NN Starting address time constant the voltage shouid have increased 10 0.63 of the final valus. If your finai value was
16518/32134 154 to N .of Data Table 220 decimal, for example, then the value of voltage across the capacior after a time interval
16519/ 64 Hi N ‘at 16538 equal to one tima constant (TAU} would be (.63 * 220 or about 139 decimal, Now find how many
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samples were taken to obtain that value and muitiply by the total time per sample.
If your count was 30 samples, then one time constant would be equal to

30 * {time for one sample, see Step 4) = 30 * 82.77 usec = 2,48 msec

Because the time constant TAU = R*C, then we can determine Cif R is known.
Suppose R = 5.1 Kohm, then

C=TAU/R = (248X 10—3)/{5.1 X 103) = 0.48 X 10—6 F
or
C = 0.48 uF.

STEP 7 You can POKE a different timing byte into register C at memory location
16628/32144 and then repeat the experiment to obaerve the effects. You can also try different
values for R and C.

STEP & It would be more appropriate to make use of the BASIC programming facilities
provided by the computer to plot a graph of voltage versus time on the video screen or on the
screen ofan oscilloscope. We shall leave the video display routine for the remaining experiments.
In the rest of this experiment we shall describe how 1o interface an oscilloscope to display the
acquired data. if you do not have an oscilloscope at your disposal, we suggest you read through
the steps to understand how the display can be achieved.

STEP 9 The tabulated data collected by the analog-te-digital converter and stored ina file in
W/R memory will be output to a digital-to-analog converter, The analcg output will be used o
drive the vertical Y channel of an oscifloscope and dispiay the charging curve of the capacitor.
Some simple software steps will be introduced to make the program run more smoothly under
operator control. Wire the additionat circuit shown in Figure 6.12.

STEP 10 Add the foliowing lines to the BASIC PROGRAM:

100 LET N = 33333

110 PAUSE N

1156 CL8

120 FAST (for B&W models only)
130 LET L = USR 16619

130 LET L = USR 32135
140 PRINT ¢“PROGRAM HAS CONCLUDED”
150 sTOP

(for Color models)

and change the following two lines to read:

*k Ok ok Xk

160 FOR M 16618 TO 16639
200 FOR M 1661¢ TC 16639

H

{for B&W models)

#l

Analog Conversions

+ 8V
T 12 Yg

DO 1
2 16
D1 = # to OSCILLOSCOPE
D2 3 i5
D3 4 14
D4 5 558
D5 6
D§ 7 13
D7 — .8 ]
9 10
OuT*
C11*
Figure 6.12 Experiment 6.18 Schematic.
* ok k%

160 FOR M = 32135 TO 32155

200 FOR M 32135 TO 32155
* ok kK

{for Color models)

H

STEP 11 Now load the decimal code for the following machine language routine which

performs the digital-to-analog conversion of the stored data. RUN 150 and input the decimal
codes.

MACHINE LANGUAGE PROGRAM

DECIMAL  INSTRUCTION

ADDRESS CODE MNEMONIC COMMENT
B&W / Color
16612/32135 33 LD HL NN :Data Table stariing
16820/32136 154 Lo N ‘address
16621/ 64 Hi N 5t 16538

/32137 104 Hi N ‘or 32154

16622 /32138 6 LD BN ‘Register B holds the
16623/ 32139 79 N ‘number of values in the file,
168624 /32140 126 LD A(HL) :Place the value in Register A
16625/ 32141 211 OUT (N}LA :Output it to the DAC for
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. i being displayed on the
e ) \ oo to analog | T ory looation 16667/ 32153, Thie s‘mﬁs g:esggarr%g?a;u;?g:?{z& No?e hOF\)N use can be
oan ) aras > oL ot 10 next value. 050 l0scope scroen and bl coytroé s g outinespheéd in the BASIC ROM, by using a direct
16628/32144 16 DJNZ d ‘Done ail data (B=0)7 5 made of any of the self-contained S;pfiaérosgje r
18629/ 32145 250 d No. Jump to 16624/3214¢, : CALL instruction in your own machin . ‘t
16630/ 32146 205 CALL NN *Yes. Call the ROM subroutine _ . ing curves for resistor capacitor
16631/ 187 Lo N . STEP 17 From the known properties of exponential Ch?fgr;zge the fime constant from the
/32147 176 LaN : networks as outlined in the first part of the experiment, deter
16632/32148 2 Hi N test for key closure. picture on your osailoscope screen. _ ight fike to try your hand at
16633/ 124 LD AH ‘Make up a mask for STEP 18 if you do not have access to an oscilloscope ym;[magf voltags valuos. Yoo can
2148 bss ppta rogramming the Timex/Sinclair microcomputer to plot YOU; table
18534ﬁ 21 o oo E when key 4 is pressed. | zdapt one of the programs given in the following experiments.
32150 13 ADDE : -

: ; ta and display the daia on

o35/ 32151 254 CPN d your microcomputer to coliect da 'a) Canal
MARY ' You have now used y : by the digital-to-analog
o) ot N oo mogel sode for o 4 S:c:\fher instrument. 1t is also possibie to send the analog Ségna;p;??rfgeeip:rément.
16537//35;22 2(1}(1} gET Z :got‘w n:OdEg\g?ge or ey 4 converter to a chart recorder and obtain a permanent recor
‘Return to

16638/ 32154 24 JRd ‘Key 4 was not pressed so
16639/ 32155 235 d ‘continue displaying the file

: EXPERIMENT 6.2
R
STEP 12 Note the simple interfacing required for this integrated circuit chip. Device select ; INTERFACING A LIGHT-SENSITIVE RESISTO
address 11* could be used to drive this DAC tegether with OUT*, because the DAC will be
receiving information from the processor, If you have only 1K of W/R memaory, you may have . istor (CdS:3 Megohm dark)
difficulty placing the whole program in memory so a number of word-saving actions will have 1o i COMPONENTS 1 * Photoresi (

b tak i 1 * ADC0804 Analog-to-Digital Converter
& taken t * 1-Kohm resistor
1 1 * 10-Kohm resistor

STEP 13 Now that you have loaded both your machine language program and your BASIC 1 * 150-pF capacitor
routine, switch on your osciloscope and center thetrace. Usea voltage range of about 0.5 Viem : de
and switch the vertical or v INput to ac. Set the horizonta! time base of the oscilloscope to 10 . itive resistors are relatively inexpensive components th_at c?n‘prov_i
msec/cm until you have a picture on the screen of the oscilloscope. Then adjust to a different DISCUSSION L;ght-seigsr(e:istance to produce a digital detector of a “light—nc light s:tuaggn.
e base (o obtai the most salstactory trace. ?';ae?jaiﬂgg %t;ecd a;g{g exampie, in & burgutar alarm or any etherappﬁca:ion mv?ie\;;r;?;shsozr;;;:g

? . ‘! ' ! . 0 an anaio _go-diglta converier, - ’

STEP 14 RUN your program. Asin the first part of the experiment, the table of voltage values of a fight beam. By 'me_rf&;?'thi::eeni?tz!g;e;’;?;; the “full er;gmfuil off" situation. Applications can
will appear on your screen and will remain there untif you bress any key, whareupon BASIC lne i detect zi.'gh{ chsgg:;signi?ng clouds passing over a solar CO'FBCIQV or detec%tn_g chtarégeué?ng
110 will Hinish execution and the videg streen will clear while the 780 comimences execytion of bieﬁwﬁ;ﬁ”mem where you wish to monitor a color change in a titration experiment. By
the next machine language program cafled by the USR routine at fine 130, ©

it i ifi hanges.
i i iti i ossible to detect specific color ¢ ‘ ‘
e o 'the llghl-si?ﬂsii{ve reSlS'ioza‘r:tkiiepcreases its resistance as the intensity of light
STEP 15 Nowthat the second machine lan yage program, which starts at memor iocation The phomregstor a;sed in this expgrtrr;l o nrancases fis 1esance as e iensity o lont
16619/32135, ig being executeq you should Ogbsegrvg or? you‘{ oscilloscope screenya plot of i incident on its wn‘ndowmcreals?s.;tzsi;g;ao o A e ooer
voliage on th’e vertical scale against time on the horizontal scale. The trace should be analog voithage in ;rgs; gg ;nvzgtageis o F e A3 Tre decracin resistanceoo;thz
exponential. If you do not have such g piot, check ali the osciiloscope setftings including the gr:n;;forg?stto{?arﬁglisa o L g &0, Tho decreas pr.oqufegﬁirte:?m
automatic triggering setting. if you still do not have a picture and Youare absolutely sure that the ia\?\; oam;a;ger ok oI (o e ot o o cotor and produce
oscitioscope is not faulty, you need to check your machine language program and hardware. Com,/ersmﬂ kage b e

STEP 16 The systern shouid run automaticaliy and wiil only return to BASIC whenthe 4 key

is pressed. See Machine code section from memary location 16630/32146 to 16639/32145, PROCEDURE ‘

which makes use of 4 BASIC subroutine contained inthe ZX81/1000/ 500 ROM atlocation 699 | ' riment as shown in the schematic diagram ensuring that the
(2" 258 + 187)and the Spectrum/2088 ROM atlocation 688 to detect key closures. In this case, ' STEP 1 W”e ;he E_expe d at the source of light you wish to monitor,

key 4 has been selected as the code that will cause the return on zero instruction to be exscuted transparent window is directed a
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C3* — ! 73&-___..___ Do
IN* 2 LA
OUT* —— 3 AL
5
x5 15
g 0804 ["———— D3
X L SR
+5V 8 13 D5
7 12
PHOTO- 8 D6
RESISTOR -1-'1—-—-»-—* D7
4] Ti9
10K

i- 150
pF

Figurs 6.13 Experiment 6.2 Schematic,

STEE 2 If you have & voltmeter on han
measuring across the 1-Kohm resistor. With no

q, check the veltage output by the sensor by
light you should have near zero voltage and with
rlight-dependent resistor circuitis

anguage routine in the usuai manner.

Analog Conversions

20 FAST
30 LET L = USR 16514
40 FOR A = 16542 TO 16618 STEP 4
* ok ok %k
10 CLEAR 32129 {for Color medels)
30 LET L = USR 32130
40 FOR A = 32158 TO 32234 STEP 4
* ok k%

50 PRINT ; TAB (6 — LEN “A” )}, PEEK A; TAB(16 -
LEN “(A+1)” ); PEEK (A+1); TAB(24 - LEN “(A+*2)" ); PEEX
(A+2); TAB(32 — LEN « (A+3)” ); PEEK (4;3)

80 NEXT A

70 PRINT “ALL IN”

80 LET N = 33333

90 PAUSE N

100 CLS

110 LET A = 16452 {tor B&W models)
110 LET A = 32158 {for Color models)
120 FOR X = 0 TO 63

130 LET Y = INT({ PEEK A)/8)

140 PLOT X,¥

150 LET A = A + 3
160 NEXT X

170 PAUSE N

180 STOP

MACHINE LANGUAGE PROGRAM

DECIMAL  INSTRUCTION

g the converter as wel! &s providi
tf::s:s s:xace kfcr the vaiues of yo!tage, broportional to light intensity, which are input from thep AE)CITS
periment the valyes Input o the file will be plotted out by the BASIC program so you cén

gz;ic;itmrgﬁtvg?e;t over the detector. The machine language program is similar to that in

Boraume ;:o’n :J; :{r;e{ Sﬁ;SfC pr?grar: has been altered to allowfor blotting the vajues obtained

Ny suppiies the set of values proportional o th fight i '

be plotted on the vertical Y axis, To i ASIC progran hese can
: ‘ _ » 10 provide a graph of movement, the BASIC progra i

horizontal time displacement vig the variable K as shown in lines 150 thro::gh% Sr{? Providesa

BASIC PROGRAM

ADDRESS CODE MNEMONIC COMMENT
B&W / Color
168614 /32130 1 LD BCNN
16515/ 32131 20 Lo N Detay counter for ADC.
16516/32132 79 Hi N ‘Number of data paints.
16517 /32133 33 LD HL NN :Data Table starting address
16518/ 32134 161 Lo N ‘at location 16545/32161
16519/ 84 Hi N

/32135 125 Hi'N

16520/ 32136 17 LD DE NN :Delay counter between data
16521 /32137 285 Lo N .acquisitions.,
16522732138 2 Hi N
16523/ 32139 211 CUT (N),A :Start ADC conversion with.
16524 /32140 3 N ‘pulse to Port 3.
16525/ 32141 13 DECC ‘Loop 20 times for delay.
16526 /32142 32 JRNZ d :Done?
16527 /32143 253 d :No. Jump back to 16525/32141.
16628/ 32144 14 LD CN Yes. Restore counter.
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16529/ 32145 20 N

18530/32146 219 IN AN} :Read ADC value from
16531732147 3 N :Port 3.

16532/ 32148 119 LG (HL)A ‘Store data value in memory,
18533/32149 35 INC HL Point 16 next entry in table,
168534 /32150 27 DEC DE Time delay between values,
16535/ 32151 i22 LG AD ds DE counter zero?

16536/ 32152 179 ORE

16537 /32153 32 JRNZd :No. Keep counting down
16538/32154 251 d by jumping back to 16535732151,
16538/ 32155 16 DUNZ d Table full (B=0)7

16540/ 32156 235 d :No. Jump to 16520/32136 again.
16541 /32157 201 RET ‘Yes. Return to BASIC.

STEP 4 RUN your program, If ¥ou wish Lo observe your hand motion over the photoresistor
and have the results of the movement recorded on the video screan, you will needto synchronize

the movement of your hand with the pressing of the ENTER key after the RUN key has been
pressed. This may take a little practice.

STEP 5 Having stored data, presumably about your hand movement over the photoresistor,
then by pressing any key on the beard, the Timex/Sinclair will respond by coming out of the

pause Joop and displaying a plot of your hand movement over the photoresistor on the videc
screen,

STEP 6 You can vary the timing constant in register C (location 16515/32131) to some
larger value to obtain the data over a longer period of time.

EXPERIMENT 6.3
ELASTIC BEAM MEASUREMENTS USING STRAIN GAGES

COMPONENTS 2 * Strain gages; resistance = 120 ochms Type CEA-0B-125Uw-120 {Meg-

surerments Group}

2" 120-ohm 1/4-watt resistors matched 10+ 1%

1" LM358 Dual BI-FET op amp

17 ADC0804 Eight-bit Analog-to-Digital Converter

1 *each 10-, 18- 33-Kohm resistor

1" 150-pF capacitor

1" 0.47-uF capacitor

1 Hacksaw blade andg C-clamp

DISCUSSION  Strain gages are resistance transducers made up of fine wire grids which are
mourted rigidly to the surface of the object under study. When a siress, inthe form of a force or
pressure, is applied to the object the induced strain causes the surface to yield (elongate in some
direction) to a degree dependent on its alastic properties. As the surface yields, the resistance of
the strain gage changes. Strain gages are used extensively in engineering applications to
measure stresses in structures as diverse as airplanes and bridges. Because the extent of strain
is very smafl, the corresponding signal generated by the transducer is alsovery smail. in addition,
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Figure 6.74 Experiment 6.3 Schematic.

i ‘ ich i ces
the resistance of the strain gage also depends on the ambient temperature which introdu
itional errors in the signal. o on
add‘l,'t%;(r)arlechnique to convert the resistance to an anglog yoitage for analog-to q'gt':}?i?aigvoe:; é}a
employs the Whealstone bridge. The Wheatstone bridge is a network of four resis T
square with each resistor forming one side of the square ang conne“midpz?{)tsf}ﬁacco;mers otwod
i i lied to diagonally
the others (see Figure 6.14). When a voltage is app _ iy
| ross the other diagonal is zero,
istances are adjusted such that the voitage drop ac _ , GONE : e
;?:Zfis balaﬂced,jAt halance, the product of the two resmignces in opposite sidesis egual to
product of the other two resistances. From this relationship:

R(1)*R(3) = R(2)"R{4).

lculated.
values are known, the fourth can be ca ‘ N et
' ag é?éi?ng the strain gagesin two of the arms of & balanced WheatsfrfSrlggigﬁgllfifﬂops;dlzrfce
i i ining force is increased. A hig

t the bridge out of balance as the elastic straining dance
;zléT (Field gffect Transistor) amplifier can then bg used to measure the out c:;::lgg%ir\:\/ertgd

and produce a larger voltage proportional to straining force. ThIlS .voltage ca{! r
to digital form for the microcomputer by u;‘mg an ana;oi-‘éc;-déggzlri;oenn\.;eérsep.erformed o tho

he first part of the experiment, & simple mechani ' _ on

defloﬂrr;a{tekon of sn etastic body to a deforming force. The deformation foliows a simpie relationship

referred to as Hooke's Law:
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ment. we investigate the damped harmonic oscillation of the elastic beam. The use of strain
gages enables us 1o measyre the disturbance from equilibrium of an elastic body by measuring
the change in resistance as the strain in the elastic body changes.

PROCEDURE

STEP 71 Strain gages shouid be abtained with g resistance as closs 1o g preferred range of
resistor which you have avallable to you, or if at all possible close to a vaiue of precision resistor
which you might have in stock. Resisior values such as 100, 120, and 150 ohms should be
suitable. The strain 9ages we used had a measured resistance of 109 ohms sowe used 1 10-0hm
high stabifity resistors initiatly in the arms of the bridge. We were abieto complete the experiment
using ordinary 1/4-watt carbon resistors by altering the values of R{F) ang R(Gito bring the
QuUlpiit of the amplifier to mid-range approximately 1.9 V with foad of 50 g on the elastic beam,
Some trial and error may be necessary but an ordinary volt-chmeter should be sufficient 1o
enable you 1o set the values of coemponents for satisfactory operation of YOUr circuit,

Altach your strain gages to the elastic beam (hacksaw blade) a day or two before you
anticipate carrying out the experiment. The strain gages were giued to a hacksaw blade on ejther
side at the same distance from an eng. Allow about 8 inches (15 centimeters) from an endtothe
ciamp or fufcrum about which the hacksaw biade will be strained. Giue the strain gages as close

blade with No. 01 sandpaper or equivalent and wipe down with alcohe! prior to gluing. This
arrangement of strain gages doubles the change for straining (doubies the changein resistance)
and stilt Compensates for temperatyre changes. Use shielded twin core cabie to connect the
gages to the circuitry on your socket board. Twist the ieads from each gage and join the two
shielding braids at the gage end. There should be no need 1o ground the hacksaw blade or the
shieiding itseif, or attach the braid to the hacksaw biade.

each other and to the resistance of the strain gages. if you have high stability resistors of the
values required on hand, use them in the bridge arrangement,

STEP 3 Suspenda 50-g weight about 8inches (15 centimeters) from your fulcrum and aflow
the system to come to equilibrium {see Figure 6.1 5). Using a voltmeter atthe output of the LM358
amplifier, pin 1, measure the de voltage. i the vailue you measure is grossly different from about 2
V, adjust the resistor, R(G), by about 1-Kohm increments untii you bring the output voliage to
about 2 V.

STEP 4 your strain gages and resistors are so out of balance that a reading of 2 V cannot
be obtaired, reduce the gain of the amplifier significantly by putting R(F) = R(G) = 1 Kohm and
look for an output of about 2 V. Now slowly increase R{F) and adjust the value ot R(G)to keap the
bridge on an output of abolit 2 V white the gain resistor, R(F), is increased, Any mismatch of R(F)
and R{G) wiil iead to increased noise, butthe averaging routing inthe machine language program
should eliminate most of the noise from that source. With sufficient gain your analog-to-digital
converter will give g reasonable digital Cutput per 1 g of waight,
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Figure 8.15  Elastic Beam Apparaius,

STEP 5 The software we have used will display & decimal vg!ve cor{esponﬁioéngat: 'c:i
deflection voliage output from the amplifier, Inspection of th‘e machmg Iangt:ageé % ?;;etween
show a machine code averaging program as well as a fairly long time de ayf o gg o
readings. The time delay ioop ocours between 16522 /32138 an? 1 85?9/:;;4:5.'2;2;%0: iy

igital ith a device select puise at m
to-digital converter has been started w;‘_{ _ . ety o0m 16 ohios
tion DINZ to time out a smali delay .
32160, the system makes use of the 780 mstw_c ; oo B
i - DINZ automatically decremen g
the cenverter time to complete the conversion . . o eer o
i i i 0. DJNZ also requires the calc
at focation 16542/32158, until register B is . 4 : :
:Z?ai?vc; displacement in this case just back cne focation, or counting the dispiacement a
i -1 = 254
iti 5. the displacement becomes 255 — t = 2 ‘ _ ‘
pos:;“trixzna\zfgraging roS:ine commences at location 16563/321 ?Q where register r? |sil{;at\c§§?0\ggﬁ
the number 4 (that ts the number of times registers [ and E will be rotated§g1t63 ETQ‘/ e
carry). Because the number of readings taken {16) wast _éoacge?haet :i g:;tg; o e o
i i f the readings, rotation o . 1IN & :
registers D and E contain the sum o' ths o8 I (e £ fogfeto 8 the
ivisi i i by 16, so that the result le .
division by 2, then by four times is division ‘ » (o laler retrval by the
i is this value that is jcaded into memory fo _
BASIG program. The oAGs ot tabulation procedure adopted in other
ram. The BASIC program makes use of the taby p : e
s:\):lr(a:nﬁs:.egettmg the BASIC variable N to a number greater th_an 32,768 causeé-‘, t?:a ;ngtv?ng
PAUSE pericd (on the B&AW models) that is terminated by pressing any key. Loa |

BASIC program and machine language routine.
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BASIC PROGRAM

10 REM 123456789 12345
123456789 123456789

30 LET L = USRr 16514

40 FOR A = 16579 TO 16599 STEP 4
* ok ok %

10 CLEAR 32129
30 LET L = USR 32130

40 FOI: il = 32185 TO 32215 STEP 4 |
* %

50 PRINT TAB(4 - LEN
PEEK (A+1));
PEEK (A+2);

60 NEXT A

70 PRINT “ALL IN”

80 LET N=33333

STR$ PEEK 4A);
PEEK (A+1); TAB(20
TAB(28 - LEN STR$ PE

80 PAUSE N
100 cLs
110 GOTO 30

120 FOR M = 16514 TO 18577

120 FOR ¥ = 32130 To
321
130 INPUT N %

140 POKE M,N
150 PRINT M; «=

" ; PEEK M, ;
180 NEXT M o

MACHINE LANGUAGE PROGRAM

DECIMAL INSTRUCTION

ADDRESS CODE MNEMONIC
B&W / Color '
16514 /32130 33

LD HL
16515 /32131 195 LohJ'NN
16516/ 64 Hi N

/32132 1om Hi N

16517 /32133 6 LD BN
16518/ 32134 20 N
16519/32135 17

LD
16520/32136  ps5 Lo r\? BN
16521 /32137 4 Hi N
16502 /32138 29 DECE
16523 /32139 32 JRNZd
16524/32140  osg d

6789 123456789 123456789 123456789
123456789 123456789 123456789

{for B&W models)

{for Color models)

PEEK A; TAB(12 - LEN STR$
~ LEN STR$ PEEK {(A+2));
EK (A+3)); PEEK (A+3)

(for B&W models)
(for Color models)

COMMENTS

Pointer to Data Table
starting address at
focation 16579

or 32185,

‘Number of entries

in Data Table.

Delay counter between
readings = 4 * 955

= 1020.

‘Begin delay countdgown,

16525 /32141
16526 / 32142
16527 /32143
16528 /32144
16529732145
16530/ 32146
16531 /32147
16532 /32148
16533 /32149
16534 /32150
16535/32151
16536/ 32152
16537 /32153
16538/ 32154
16539/32155
16540/ 32158
16541 /32157
18542 /32158
16543/ 32159
16544 /321860
16545 /32161
16546 / 32162
18547 /32163
16548 /32164
16548/ 32165
16550/ 32166
16551 /32167
165562 /32168
16553/32169
16554 /32170
16555 /32171
16556/ 32172
16557 /32173
16558 /32174
16559 /32175
16560/32176
16561 /32177
16562 /32178
16563 /32178
16564 /32180
16565/ 32181
16566 /32182
16567 /32183
16568/ 32184
16569 /32185
16570/32186
1657t /32187
16572 /32188
16573/ 32188
16574 /32180

21
122
131

32
248

24

115
35
16

239

201

17

197

20
2N
19
16
254
14
17
13
40
10
167
219
19
131
95
48
248
20
24
243
14

203
26
203
27
13
32
249
193
123
47

DEC D
LDAD
ORE
JRNZd
d
JRd

d

LD (HL)E
INC HL
DJNZ d
d

RET
NOP

LD DENN
Lo N

Hi N
PUSH B
tDBN
N

OUT (N),A
N

DUNZ d
d
IDCN
N
DECC
JRZ.d

d

AND A
IN A (N
N
ADDE
LB EA
JRNCD
d

INC D
Jrd

d

LD CN
N

p

RRD

p

RRA &
DEC C
JRNZd
d

POP BC
L.DAE
CPL

Analog Conversions

s DE zero?

‘No. Go backto 16522/32138.
Yes. Jump over End of
‘Routine to 16538/32154.
:Store the data average.
Point to next Table entry.
Coltected 20 averages?
‘No. Jump to 165198/32135,
Yes. Back to BASIC.

initialize sum of 16
readings per datg
point to zero.
:Save data counter,
A.oad wait counter.

Start ADC conversion
with puise to Port 19.
Wait for ADC 1o finish.

:Number of readings 1o be
averaged =17—1 = 16.
Collecied 16 readings?
Yes, Jump {0 16563/32179.

:Na. Clear the carry flag.
‘Read ADC ai Port 19.

Add sum of readings,
and store new sum.
LCarry overflow from E?
:No. Go backio 16550/32166.
:Yes, Collect overflow in D
for 16 bit sum, then go
‘back to 16550/26771.
:Set up divide-by-2

for 4 times = 1/186.

:Get average of readings
by dividing by 186 with
:Right Rotates of D and E.

‘Done with division?
‘No. Go to 16565/32181.
‘Yes. Restore data counter.

175
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U unapter 6

: decimal output, A graph of output versus
added weight should yie|

260 IF M > X THEN LET X M

THEN LET N = M
da very good straight fine, 270 IF M < X

STEP 7 The Strain gages attachedto g hacksaw bi

= W (for B&W models)
16575 /32194 95 LDEA 230 LET N 9

16576 /32192 24 JRd YUmp 10 End of Roytine . 240 FOR A = 16580 T0 §§Z§5 {for Golor moaels)
:_ 16577/32193 o3 d at 16532/30148 | 240 FOR A = 32196 TO

% 250 LET M = PEEK A

fi‘: STEP & Add differant weights and recorg the

1?;

280 NEXT A

adeasan elasticaily strained system can 290 LET V = (X + N) /2

be used 1o display the damped simpie harmonic maotion of g vibrating System. Pay particuiar i 300 LET W = 42/(X -~ N)

attention to the positioning of the fulerum of the beam and the rigid Clamping of the stationary part 310 IF X — N <= 0 THEN GOTO 390 (for B&W models)

| of the beam, we noted that if the stationary part of the beam was not firmly fixed to the bench, 0O LET 4 = 16579 (for Color models)
Secondary oscillations vecurred which tenged 10 mask out the original motion (and led to some 32 = 32195

: strange results). we also noted that if the wires connecting the sirain gages to the bridge ware 320 LET A - 0 To 63

! allowed to flex, EITors in your graph could result. Check that yeur bridge output is correctly 330 FOR X =
adjusted when the system ig Nat vibrating. D "

20
- PEEK A) ~ V)* W) +
ficutties experienced at this point could be due to not | 340 LET ¥ = INT(({(

being able to balance the bridge, again use a small value trim POL {10 chms) in series with one of ’

; 350 PLOT K.Y
Your fixed resisiorg and adjust it ynsi your bridge is balanced, i 360 LET A = A + 1
STEP 8 The machi

: 370 NEXT K
ne language program is identical to that used for the elastic beam apar; i 380 STOP UILIBRIUM START THE OSCILLATION AND
from changes to the major time defay opto aliow g sample time of a few seconds of the damped i 390 PRINT “YOQU ARE IN EgQ
motion to he taken and the extending of the data file from 20 feadings to 70 readings, Modify the 5
Mmachine language prog

RUN AGAIN®
ram by executing the fofiowing direct commands: ‘

. i i ailiorium
10 Attached a weight on the beam with adhesive and de{? rrjee?iegéarﬁg Iéi,i?e;lsuring
POKE 16518, 79 (B&W) Ofnﬁfnpghe experiment can be performed using "a”@;’; Wf;?:é?nagnconsmnts ofthe system can
POKE 16521 J 12 ' Sze amdun% ot the first defiection and the time of decay, the
2 H
POKE 3213470 (Colon)

be determined.
POKE 32137 ,12

: STEP 9 The BASIC Arogram is extended appreciatly. The taple length in fine 40 has been
| extended to 16649/32265, The larger file of valug

stic beam.
lf STEP 11 Type in RUN and just after you press ENTER, release the ela
Measure-
i ) ; ld appear on your screen.
S can then be plotted on the video screen with [ STEP 12 A damped slmﬂli haéizgnb!; :j&;iﬁ:g} igfct);are‘p ﬁa picture does not appez?r, the
i the program commencing at line 200, To aliow for the smal range of cutput voltages and for the | ments can be made directly or dij?tionai software so go back and check everything again.
" fact that smaller weights ©an cause smalier deflections, the first 20 values are serutinizeg to ‘ problem is most likely in your a
| determing the maximum and minimum values of the excursions Of the bridge when the hacksaw ’
i blade js displaced from equilibrium ang allowed to osciliate. From these valueg the factors F
| required to preduce fujl Screen deflection for the first oscillation with the equilibrivm position on E

the midscreen line can be Calculsted. Vig the midscreen deflection facior and Wis the scaling
; factor,
i

The program wii not run if you haye the system
line 300 becomes ¢ hence the Need for

in equifibrium s0 that the denominator term in

EXPERIMENT 6.4
fine 310 and 390. The Timex/Sinciair would otherwise [

L VALUE
‘ TO CONVERT VOLTAGE APPLIED TO A MOTOR TO A DECIMA
break the Program and retyrn 10 tha video SCreen with the error report:“out of range.” i Dicital Convertar
Add the following fines to the BASIC program: ! . 0894 Fight-bit Analog-to-Digita )
COMPONENTS 1 ADC G motor plus 3. power supply or batteries

40 FOR A = 16579 1o 16649 STEP 4 (for B&W modefs) 1 * LM358 Dual Op Amp

40 FOR A = 32195 Tp 32265 STEP 4 {for Color modeis) . 1 *1-Kohm reS!stO(
200 LET 4 = 16579 {for B&W models) f 2 * 10-Kohm potentiometers
200 LET 4 = 32195 {tor Color models)
210 LET M = PEEK 4

t " 150-pF capacitor
17 1.0-uF capacitor
17 DC voitmeter

220 LET X = M
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a - T i language routine.
enable the . e De use ' . 7 2 | e BASIC program and the machine guag

H ION  Know! f the relati i tw tor sp d applied voltage would . STEP oad t p

let ctor be b d as a tachometer or, i a fan blade wers attachad to the sha tasa

indicator of air speed. Because the maximum voltage that can be appliedtothe motoris only 3V, BASIC PROGRAM
use will be made of the characieristics of the analog-to-digital converter tg adjust its reference '

voitage and zero offset to cause the full scale digital output of the converter, 0 to 255 (o

10 REM 123456789 123456789 123456789 12345 (for B&W models)
correspond to the 0 to 3 V range. 20 FAST
The reference voitage adjustment and zerc ofiset clrcuitry is shown in Figure .16, The values _ 30 LET L = USR 16514
of the two potentiometers are not critical, values between 1 Kohm and 10 Kohm should be ' 40 FOR A = 16543 TO 16547
acceptable. The voliage applied to the motor is fed directly to the V+input, pin 8, of the converter. oK ok R {for Color models)
When the program is run, the voltmeter will give a reading of the applied voltage and the 10 CLEAR 32129
microcomputer will dispiay the decima! equivalent on the video screen. 30 LET L = USR 32130
Once the system is calibrated, the microcomputer could be used to convert the decimal 40 FOR A = 32159 TQ 32163
values directly to voltages and plot a table for you. * Kk K K
50 PRINT A
| PROCEDURE i
| . 60 NEXT A
‘ STEP 1

Connect the circuit as shown in the schematic usin
the mator, if a power supply is to be used rather than batteries, y

output to the motor is strictly limiled to below 5 V to protect t
excessive voltage,

aseparatedosourceto or 70 STOP (for B&W models)
ga mu[;t eﬁs:resthatfhevglct};vge | 80 FOR M 16514 TO 16541 (for Coior models)
he input of the converter from ! 80 FOR M = 32130 TO 32157

| 90 INPUT N
100 POKE M,N
110 PRINT M; “=% ; PREEX M, ;

]

140 NEXT M
+ 5V y
HINE LANGUAGE PROGRA
20 10 é MAC
. =2 DECIMAL INSTRUCTION
e 2 LA > ‘ ADDRESS CODE MNEMONIC COMMENTS
- — . : B&W / Color
T : . D2 16514 /32130 1 LD BC NN ‘Load counters for
§ : . D3 16515/ 3213t 20 Lo N :conve{terfdeiaysia‘::mems
[ T 2 0604 ""—--—-—--14 : 16516 /32132 4 Hi N :r}umber 0 mez; .
L ot } 18517 /32133 33 £0 HLNN ‘Pointer to starting
6 ” N address of Data Table
Ds 16518/32134 159 Lo .
. 12 - 18518/ 64 Hi N .at location 16543
2 . 1 > : /32135 125 Hi N ‘or 32159. N
| D rer
=M B S - - b7 16520/32136 17 LD DENN :E)eiay cousurmnemS
1 16521 /32137 255 Lg N data mea .
- , :f} 4 Je ' 16522 /32138 2 Hi N |  eomion
g - i ‘ 16523 /32139 211 QUT (N A ,SF?;% A?Se gcoopon ;
! ! b 3 N with pu t3.
e 0 : 12222 ﬁ 2? :(1} 13 DECC ‘Wait for conversnog.
| : h time”?
- ' 32 JR NZ,d Long enoug
+5V I_“:Ez__uu_ == 150pF 1222??3313@ 253 d No. Jump back to 16525/32141,
| 82K " g 1BR28 /32144 14 tDCN ‘Yos, Resiore delay counter.
| - 185258/ 32145 20 N

‘Read ADC from
Figure 8.16  Experiment 6.4 Schematic. 18530/32146 219 AR
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tev wHEr b

1*10-uF Capacitpf
16531 /32147 3 N Port 3 1 * 150-pF capacitor
16532 /32148 119 LG (HL)A :Store value in tapje nt, whether it be for monitoring
: 16533 /32149 35 INC HL ‘2nd point to next entry, . DISCUSSION ~ Temperature is an often sought ifffrnr:eﬁfi‘gzrﬁtg%de weather, Using modern
ki 16534/ 32150 27 DEC pE Start waiting between the temperatura in your home, g{een.house, _?ls 'ami;:rocompumr’ both control and sensing of
16535 /32151 122 LDAD ‘Mmeasurement, | iconductor technology and your Timex/Sinclair bilty to display the information on the
16536 /32150 179 ORE ? er;r% erature is easily accomplished together with t?}e a {gnents arerequired along with your
16537/ 32153 32 JRNZd Downcount finisheqo E v?dei}} screen. Once again oniy a minimum of electronic comp
16538/ 32154 251 d No. Jump back 10 16534/32150 ; j unit. id state sensor which produces an
16589/32155 18 DINZ ¢ All measurements takens '[ mte‘?haecfemperature sensor type AD590 is a foW'CastKZ?\iﬁ zfange in temperature, that s the
16540 /32156 235 a ‘No. Jump back to 16520/32136 output current equal to 1 uA (1E-6 ampere) per degre s celsius) = 81 F (degrees Fahrenhait)is
18541 /32157 201 RET 'Yes. Return to BASIo tat S00K (degrees Kelvin) = 27 C (degroes c duce & potential drop which
Yes. : output Cii; TGWSOG A.Such acurrent can flow through a resistor to pro
.. : ' 00" 1 uAor300 pA.
| STEP 3 Connect the voltmeter acrogg the mo 3

) " ; . X . i before
tor with the Positive leag connected to the f is also proportional to temperature _ le of analog information and
Convertar input to Measure the input voltage directly. f s aTiis?fa:atéon of voltage with temperature is another examp

wecanry ’ake use o1 such i wormation wer USt COﬁvel’t ' I H ; H ; H

i i erate.
the range of input analog voitage over which the converter will op

STEP 4 Increase the voltage applied to the motor until it begins torevoive. RUN the program

and record the decimal display and the voltage applied, |+ ne value is fecorded, then adjust
botentiomeater 1 until g reading is obtaineqd

STEP 5 Increase the voltage tothe maximum réecommendsd ang RUN the proegram again. if
the decimal values displayed do not show the maximum valye of 255, then alter potentiometer 2

until a vaye of 2585is obtained. if the decimal vajue displayedis 255, then decrease botentiometer +3V i 20 10 47
2 untita reading of 254 ig obtained. Thig should result in full scale decimal reading for your 3-v 10,uF ; .
‘ motor when funning at maximym speed. —---—-u-—-18 Do
_ : Ci9* 17
STEP 6 Now continue the experiment recording values of voltage and decimal count over * e [}
the full speeg fange of your motor and check your results for linearity, IN 18 D2
e e
i T*
STEP 7 Check the stall speed voltage by reducing the voitage applied to the mator stowly ' ou 0804 -.-..]-?..__..,.___. D3
from the vaiye needed to start the motor initially. At one voltage the motor will stop running. The : 14
difference between the stalf voltage and start voltage represents the amount of energy your 10K each

4
IR
pPower source Needs to supply to the motor windings to Gvercome friction, inertia, ang magnetic

>
m\;mmlmm’\)*

13 D5

flux losses. w‘wé DU

+5v + v 12 D6
e

STEF 8 Compare the results of thig experiment with those obtaingd in Experiment 5.2 st AAN ol 11

where youy determined the retationship between apptied voltage ang rotational speed of tha de e D7

motor

FLN

AD5S90 :

19 }

: 10K

EXPERIMENT 6.5 (bottom)
TEMPERATURE RECORDING ANG DISPLAY 5.1K

150 pF
COMPONENTS 1* AD5go Temperature sensor l

1 ADCO0804 Analogﬁo«Digiia! Converter

2 *10-Kohm ten-turn potentiomeater
1 *10-Kohm resistor

. 1" 5.1-Kohm resistor

Figure 6.17  Experiment 6.5 Schematic.




agram, Figure 6,1 7, you will seq thatthe AD590 has been placey
I series with a51-Kohm resistor. Thig i iti

andthe experiment wijl WOork equally
istor. Yoy should ke aple to calculate, using Ohm's Law, that the

M resistor will pg 1.53 v gt 300K, By adjusting the trim pot
ive g voitage of 1.35 v and by adjusting the trim pot

. a satﬁsfactcry fange of vajygg shouid be achisved,

of this latter trim POLis required, A reading below about 0.1 v wiy

preduce po Worthwhile data, whi

lemperaiyre values 1o at first decr

PROCEDURE

STEP ¢ Afrange YOur components Gnthe socket beard close to the bus eng of the board 1o
leave room for the addition of more chi

PS In the next eXperiment. Wire Your components with the
power disconnected according to the schematic shown in Figure 6,17,

STER 2 n the EXperiment, SUCcessive temperature values wiil b
W/R memary in a file g3 bytes ‘ong. When the file g filled, each new val
earliest entergq value, providing a continualty updated fife for displa
checking the Machine language Rrogram you will gee that the first tas

the file Space jn memory by exclusive ORing, XOR A (setting to 0 e
subroutine should only be

€ recorded ang placed in
ue added wilt displace the
Y on the videg Screen. By

is to updata thefile ang make

justment in the fite has taken
ifl be ready to input at location 18520 usinganiN1g instruction,

d the machine language routine returng 1o BASIC 1o await the
next command 1o collect 5 temperatyrg value. Thig Sommand is initiateg after a PAUSE time set
by the BASIC program.

Load the BASIC Program and the machine fanguage routine,

BASIC PRCGRAM

5678¢g 123456789 123456
20 FAS : (for B&W modeis)
30 LET ¢ = USR 16514
ok oy *

10 cLEAR 32129

{for Color models)
30 LET ¢ = USR 32130

¥ ok ox oy
40 LET N = 33333
50 PRINT

60 PAUSE n

70 LET L = USR 16528 (tor B&w modeis}
70 LET 1, = USR 32142

{for Color Mmodelg)

-
§

Analog Conversions

0 CLS
8 NT wER {for B&W modsls)
130 PRINT PEEK 16558
140 LET A = 16556
* ok Xk o
130 PRINT PEEK 32172
140 LET A = 32172
® Ok ko
= 3
150 FOR X = 0 TO 8 2
180 LET ¥ = INT((( PEEK A V/4) 20)
170 PLOT X,Y
180 LET A = A + 1
190 NEXT X
200 LET N = 300
210 PAUSE N
220 CLS
230 GOTO 70
240 FOR M = 16514 TO 16547
240 FOR M = 32130 TO 32183
**********
250 INPUT N
OKE M,N
:28 gRINT ﬁ; “=» 5 PEEK M, :
280 NEXT M

{for Color models)

{for B&W modeis)
{for Color models)

MACHINE LANGUAGE PROGRAM

DECIMAL  INSTRUCTION

ADDRESS CODE MNEMONIC COMMENTS
P : Table subroutine.
NN Clear Ta .
lenra) o120 1 3:23 Ii:t? : . :Pointer 1o Table starting
16512532133 64 HiN ‘address at 16558
51 A '
e /32132 125 Hi N :or 32; 7r.’2(.)f enire.
16517 /32133 22 LD DN Numbe
N
16519, 9108 o Zero accumulator.
175 XOR A Ze _ '
122;3 ; gg; gg 119 LD (HLLA ‘Load the Tabie with O's,
16521732137 35 INE%%L
185622 /32138 21 D Table fifodo
/32139 32 JR NZ,d Ta 22135

16523/32?4&0 250 d ‘No. Go to 16519/S§C )
165.34/32141 21 RET Yes. Return to BA ‘On. with
1 6522/322 42 211 OUT (M)A :Start ADC COﬂ\éerSi
22227/321 43 18 N :pui_se to F’Grt 1t. i Table

28/32144 33 LD HLANN :Point to first entry
165
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16529/ 32145 172 Lo N :at location
16530/ 84 Hi N 16556 or

/321486 128 Hi N 32172,
16531 /32147 22 LD DN :Number of entries.
16532/32148 63 N
16533/32149 126 LD A{HL) :Get first entry.
16534 /32150 35 INC HL
16535/ 32151 78 LD CiHL) :Get next entry,
16536/ 32152 119 LD (HL)LA Bump entry back.
16537 /32153 121 Lh AC Hold next entry.
16538/32154 21 DECD Downcount entries.
16539/32155 32 JR NZ.d :All moved back one?
16540/32156 249 d :No, Go to 16534/32150.
165641 /32157 219 IN AN} ‘Yes. Read the ADC
16542 /32158 19 N :at Port 19.
16543/32159 33 LD HL NN :Point to first entry
16544 /32160 172 Lo N .at location 16556/32172.
16545/ 64 Hi N

/32161 125 HiN
16546 /32162 118 LD (HLLA ‘Store new entry there,
16547 /32163 201 RET :Go back o BASIC.
16556 /32172 : NEWVAL

STERP 3 With %he temperature of the sensor near 300K check the voltage input to pin 6 of the
ADC0804, Usg a digital voitmeter if available and check that & voftage close to 1.5 Visnoted. Ifa
voltage very different from this ig chserved, you need io check the polarity orientation of your

AD58G and the valus of the series resistor just in case you put ina 510-ohm resistor or a 51-Kohm
resistor.

STEP 4 With 1.5V onpin 6, adjust the voltage cn pin 716 1.35 V and that on pin 610 0.245 v,
then RUN your program and check the decimal value printed cut. A value close to 80 shouid be
observed. This value is only an example, as variations in component values could cause
significant variations and you can adjust the range anyway with the trim pots. if you keep
cbtaining values 255 or 0, then the chances are that the trim pot atiached 1o pin 9 needs careful
adjustment around the suggested vaiue to bring your decimal readout into range.

STEP 5 We obtained decimal readout vaiues close t¢ 80 and were able to increase this o
about 180 using the heat from a 12-v kght buib, '

STEP 6 After careful adjustment of the voilages you can use the sensor and microcomputer
to track temperature changes of about one degree K. A good quality thermometer could be used
to calibrate your system and the BASIC program: could then be easily altered {o read out
temperatures in degrees Kelvin, Celsius, or Fahrenheit, This is left as an exercise for the readers.

STEP 7 Save your circuit and program if You are going to continue with the next experiment.

1

Analog Conversions

SUMMARY This experiment indicates how useful laboratory measurements can be made
using a minimum of components with your microcomputer and demonstrates how visual
information can be displayed on the video screen.

EXPERIMENT 6.8
TEMPERATURE CONTROL

COMPONENTS 1 * ADBSC Temperature sensor
1* 741832 Quad OR Gate
1*74L574 Latch
1* ADCO0804 Analog-to-Digital Converter
2 " 10-Kohm trim pots
t 7 10-Kohm resistor
1 * 150-pF capacitor
1~ Sckid state relay: Sigma 226 or squivalent. TTL input - ac mains output 2 A
17 12-V 12-watt buib
1%12-V ac transformer or squivalent

DISCUSSION  Experiment 6.5 described how the temperature of an environment could be
sensed and the collected data displayed on your video screen with the aid of a microcomputer.
There are many instances in the world around us when the control of temperature between set
limits is also of importance, for exampie, in maintaining the temperature of a greenhouse or of an
oven.

in this experiment, we demonstrate the principles involved in automatic control using high
power devices. Various temperature control schemes can be visualized, one where the
temperature is maintained constant within +1 degree and another where the temperature is
allowed 10 cycle between set temperature lfimits which might be 10 or 20 degrees apart or
whatever the operator and system determine.

We will pursue the second suggestion above because it highlights the software reguired by the
microcomputer to seek out limiis set by an operator and provides us with the means of
autematically keeping the temperature betwasen set values by turning on and off a solid state relay
which i turn controls the current flowing through a fow voitage bulb. If the bulb is placed in
contact with the temperature sensor then the sensor will heat up when the bulb is turned on and
cool down when the bulb is turned off,

The solid state relay itself is an example of current technology because a de input voitage of
between 3and 30V (such as the TTL logic 1 state of +5 V) can control anac output voltage of 110
to 240V RMSat 1 or 2 A, This indicates how most household machines can be controlied by your
microcomputer.

CAUTION: inmany parts of the world ac mains voltages are at a level of 240 V RMS, and itis
illegal for a person without an electrician’s certificate to wire equipment to mains-operated
machines. It is also potentially lethal to experiment with such circuits. We strongly advise readers
of this book t¢ seek quatified assistance should you wish to interface your household machines 1o
your microcomputer. None of the experiments in this book are o be used with mains-operated
machines.

185
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With this caution In mind, we have found that our experiments that involve the use of ac
vaoltages work quite satisfactorily from 42 or 15 V ac. So the reader should have no fear of
receiving an electrical shock from carrying out any of our experiments,

PROCEDURE

STEP 1 If you are performing this experiment following Experiment 6.5, then you will only
need to add the extra components indicated in the schematic, Figure 6.18. Ctherwise, wire the
total circuit, mounting the companents in the same physical posiion as shown in the schematic,
In this way there should be sufficient room on the socket board to plug in your solid state relay,

STEP 2 If you have saved the program from the previous experiment, you should foad it
again and modify the BASIC program from line 40 through to line 120 and EDIT line 130: 56 10 86;
Hine 140: 56 to 86, line 230: 70 to 120 line 240: 5310 83; lins 280: 53 to 83. This procedure should

S&ve you some programming fime. You must then of course RUN 240 and enter the machine
lenguage program for this experiment.

BASIC PROGRAM

10 REM 123456789 123456789 123456789 123456789 123456789
123456789 123456789 123456789 123456789 123456789
123456789 123456789 123456

20 FAST (for B&W models}
30 LET ¢ = USR 16514
* ok ok %

10 CLEAR 32129

(for Color models)
30 LET ¢ = USR 32130

L - .
40 PRINT ¢ INPUT HIGH TEMPERATURE LIMIT”
50 INPUT H
+5V
14] |7 >
9
Q
13 74
ouT * !
> 11 13,
s
C3* ——yg . TGT + —| Mxi00
0 ) 2 D3 _ SOLID STATE
IN* LAMP RELAY
12V50W
12V AC - %EE%
TRANSFORMER

Figure 6.18 Experiment 6.6 Schematic.

60
70
80

90
110
11¢
120
13¢

90
100
110
120
130

140
150
160
170
180
180
200
210
220
230
240
240
250
260
270
280

CL3
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PRINT ‘*INPUT LOW TEMPERATURE LIMIT'’

INPUT W

* ok ok %
POKE 168573 ,H
POKE 18574 ,W

LET L = USR 16517
LET D = USR 16531
LET A = 18575

% ok k¥

POKE 32189,H
POKE 32190,W
LET L = USR 32133

LET D = USR 32147
LET A = 32191
* ok kW

PRINT PEEK A

FOR X = 0 TO 63

LET Y = INT(((PEEK A)/
PLOT X,Y

LET A = A + 1

NEXT X

LET N = 300

PAUSE N

CLS

GOTO 120

FOR M = 16514 TO 16572
FOR M = 32130 TO 32188
INPUT N

POKE M,N

PRINT M; “=% ; PEEK M
NEXT M

MACHINE LANGUAGE PROGRAM

DECIMAL
ADDRESS CODE

B&W / Color
16514/32130 211
16515/32131 3
16516/32132 201
168517 /32133 33
16518/32134 191
16518/ 84

/32135 125
16520/32136 22

4) -~ 20)

22

INSTRUCTION
MNEMONIC

OUT (N},A
N

RET

ED HLL NN
LoN

Hi N

Hi N
LDDN

{for B&W models)

{for Color models)

{for B&W modeis)
{tor Color models)

COMMENT

:Clear controller latch
at Port 3.

‘Back to Basic

Clear Table subroutine.
:Pointer to Table starting
at iccation 16575

or 32191,

‘Number of entries.

187
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18521 /32137
16522 /32138
16523/32139
16524 /32140
16525/32141
16526 /32142
16527 /32143
16528/ 32144
16529/32145
16530/ 32146
18531 /32147
16532 /32148
16533/ 32149
16534 /32150
16535/
/32151
16536/ 32152
18537 /32153
16538/32154
16538/32155
16640/ 32158
16541 /32157
16542 /32158
16543/32159
16544 /32460
16545 /32161
t6546/32162
16547 /32163
16548 /32164
16549/32165
18550/
/32166
16551 /32167
16552 /32168
16553/ 32169
16554/
32170
16555 /32171
168656 /32172
165657/32173
16558/32174
16558/ 32175
16560/ 32178
16561 /32177
16562 /32178
16563 /32179
16664 /32180
165685 /32181
16566 / 32182
16587 / 32183

63
175
119

35

21

32
250
219

201
211
19
33
191
84
125
22
83
126
35
78
119
121
21
32
249
219
19
33
191
84
125
119
33
189
64
125
86
35
94
35
128
187
56

186
48

201
219

N

XOR A
LD (MLLA
INC HL
DECD
JRNZd
d

IN AN
N

RET

OUT (N},A
N

ED HL NN
Lo N

Hi N

Hi N

I.D DN

N

LD AHL)
INC HL
LD CHL)
LB (HL)LA
tDAC
DECD
JRNZd
d

INA(N)
N

D Hi, NN
Lo N

Hi N

HiN

LD (HL)A
LD HL,NN
Lo N

Hi N

HiEN

LD D(HL}
INC HL
LD E(HL)
INC HL
LD A(HL)
CPE
JRCd

d

CPD
JANC,d
d

RET

IN A(N)

Zero accumulator,
:‘Load Table with 0's.

‘Table filled?

:No. Go to 16522/32138.
:Yes. Enable controiler
datch at Port 3.

‘Back to BASIC.

:Start ADC conversion with
‘pulse to Port 19,

.at lecation 16575/32191.

:‘Number of entries,
Get first entry,

:Get next entry.

:Bump entry back.

Hold next entry.
:Downcount entrigs,

All moved back one?
:No. Go to 16539/32155,
‘Yes. Read the ADC

.at Port 19,

:Point to first entry

:at iocation 16575/32191.

Btore new entry there.
Point to HILIM at
Jocation 16573/32189,

‘Get HiliM,

‘Get LOLIM at
16574/26775,
Get NEWVAL at
Hrst Table entry.

s NEWVAL < LOLIM?
Yes. Jump to 16567/32183,
‘No.

Then is NEWVAL > HILIM?
‘Yes, Jump to 16570/32186.
:No. Then back to BASIC.
Turn on controller at

Analog Conversions

16568 /32184 3 N Port 3 and

16569/ 32185 201 RET :go back to BASIC,
16570/32186 211 OUT (N},A Turn off controiler at
16571 /32187 3 N Port 3 and

16572 /32188 201 RET 'go back to BASIC.
16573/ 32188 . HILIM

16574 /32150 o LOLIM

16575/ 32191 L NEWVAL

STEP 3 In the machine language program we have used two additional device select
pulses, GUT 3*and IN 3*,to clear and preset the 741574 latch controller. Note that when the latch
is preset. at memory locations 16528/32144 and 16567/32183, an LED probe at pin 9 should
light up, and when it is cleared, at memory locations 16514/32130 and 16570/32188, the LED
should turn off. This LED can therefore be used to check whether your solid state refay is being
turned on and off by the program.

STEP 4 Sixty-three temperature vaiues are collected and stored in the file of data starting at
memory location 16575/32191. The BASIC program then picks up values from the datafile, lines
150 and 160, and displays the data on the video screen. Whenthe microcomputer is switched on
the data file locations in W/R memory contain random data, therefore the program clearsthe file
locations using the small routine from memory locations 16517 /32133 to 16530/32146 before
PLOTting the data. This is the reason why a solid black line appears on your video screen at the
commencement of your program. This is an important feature because when cellecting data you
want 10 make sure that no values in the file have been inseried randomly by the system.

STEP 5 To start this experiment, check your circuit connections and program, and turn on
the ac supply to the bulb. RUN the program. The bulb, i it was on should go off, as confirmed by
the LED. The screen now asks you for a high temperature set limit so inser a value of about 140
decimal. This is stored as variable M. The program then asks for an input for the low temperature
fimit which is stored as variable W. Choose a value abou! 110 decimal, These values wilf be
determined by the range to which you adjusted the analog-to-digital converter to respond. if you
have any difficulties at this point refer to Experiment 6.5 procedure on how to adjust the nputsto
the converter.

STEP &8 After the low temperature sat limit has been inserted, the program should continue
and plotthe temperature values as they ars inputto the converter. The time between readingsis
governed by tha PAUSE time delay at line 2G0. To make the PAUSE time longer increase Nuptoa
maximum of 32767.

STEP 7 Vary the low and high se! limits ‘o visualize how simpie a procedure itis using a
microcomputer to control an industrial process.

SUMMARY  This experiment has been an example of automatic control where the microcom-
puter senses temperature and relays instructions back to a heating system to maintain the
temperature between set limits. The exparimen: also demonstrated how versatile a microcom-
puter system could be in altering set limits in any industrial process.
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control signals

We have seen that the signals of the microcomputer consist of the data bus, the address
bus, and the control bus. F igure 3.2 showed the three different interface connectors of
the Timex/Sinclair computer models. At that time, our interest was in those signals
necessary for Input/ Output mnterfacing; namely, the data bus, the low address bus,
and those control signals used to create IN ® and OUT*. We observed that these signals
were all available at the same positions relative to the keyway slots on all three

models ( TS1500, TS1000, and ZX-81) are 780 microprocessor control lines. The
additional connections on the Spectrum and TS2000 models are all operating system
control lines which we shail not consider. The two operating system contro] lines on
the B&w interface connector are ROMCS*® ¢ 23B) and RAMCS® (2A). These are
memory enable signals: Read Only Memory Chip Select and Write and Read Memory
Chip Select, Trespectively, They can he used to disable the on-hoard memory ICs by
forcing their logic levels into the logic 1 state, thus permitting external memory to he

The Z80 microprocessor is a 40-pin IC. Eight pins for the daty bus, 16 pins for the
address bus, and twe pins for +5-V and .y power inputs leave 14 pins for contro]
signals. All of the 280 microprocessor control lines are availapje on the interface
connector of the B&W models and include the following signals:

<IORQ* (15A)
<MREQ* (14A)

< RFSH* (23A)
> BUSRQ* (20A)

<RD*(16A) < BUSAK* (18A)
<WR* (17A) > WAIT* (19)
< M1* (224 < HALT* (13A)
> PHI (68) > NMI* (124)
>RESET” (21A) >N+ (11A)

.
|
!‘?

Control Signals

You should recognize those in the left column as control signals we have previously
described. The first four are used to generate the four unique control pulses for device
and memory selects: IN®, OUT™, MEMR®, and MEM W*. The latter three arerelated
to the timing operationg of the microprocessor. PHI is the externally generated clock
signal which controls each operation—it is the heartbeat of the computer. In addition
to directly driving the microprocessor, PHI is also available on the interface connector
to allow other devices to be synchronized with the Z80. M1 is the signal that marks the
first machine cycle of each instruction; that is, the fetch operation when the
microprocessor g performing the memory read operation to load its instruetion
register with the next program instruction from memory. The RESET line is the
external control signal, generated by a pushbutton or on power up, that forces the
microprocessor to reset its program counter to 0 and restarts the entire system. Except
for RESET?®, all of these signals were illustrated in the output timing diagram in
Chapter 4, Figure 4.5.

The control signals shown in the right column have only been mentioned
incidentally, if at all, up to this peint. The dynamic memory refresh signal, RFSH ® s

encountered have been lines whose signals are osutput from the microprocessor. This is
also the case for the HALT® and BUSAK® lines. However, the remaining four controj
lines are inputs to the microprocessor that are generated externally. The outputs were
marked in the list with the bra symbo]-.- < {“less than™ sign) and the inputs are shown
with the ket symbol—.> {(“greater than” sign). Because the output signals are
generated outside of the microprocessor, it is possible for them to oocur at any time;
that is, they wil] be asynchronous unless they are somehow controlled by the PHI line
or some other clocking control line. There are hany cases in interfacing where contro}
signals come in pairs. One signal “asks™ and the other “answers.” Typically, the signal
that asks is called a request and functions as g stimulus; the signal that answers is called

as ask/answer, request/acknowledge, or stimulus/response, the concept is the same.
The four signals: INT®, NMI>®, WAIT®, and BUSRQ® are al request inputs to the

known as Direct Memory Access ( DMA). These signals are necessary when two
microprocessors share common memory registers (addresses) in a master-slave

181
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relation. It should be obvious by now that only one microprocessor can use the address
bus, data bus, and control bus lines at any given moment. This situation arises when
large blocks of memory data are to be transferred between computers as fast as
possible and the usual serial or parallel methods are not fast enough. The master
microprocessor, which controls the transfer, places alogic0 on the BUSRQ*® line of the
slave microprocessor which ordinarily controls the memory. When the dlave
microprocessor is ready to relinquish its buses, it puts all its address, data, and
(relevant) control lines into a high impedance state {three stated) and then triggers its
BUSAK"® line. The master microprocessor interprets this response as a signal to
commence using the shared bus lines, When it has completed its transactions, the
master microprocessor relinquishes the shared buses and removes the logicO from the
BUSRQ® line. The return of the BUSRQ® to a logic 1 state signals the slave
microprocessor to resume operation.

The WAIT® input is another control line that is used in memory management.
Although it is a request input to the microprocessor, it is a response to the MEMR®
(memory request) that is usually implemented by the memory address decoding logic
of the computer. Its function is to effectively slow the microprocessor down enough to
give the memory ICs sufficient time to read or write their contents onto the data bus.
Many memory ICs are manutactured whose response times are slower than the
IICTOprocessor’s operating speed. For example, a Z80 operating at4 MHz allows only
250 nanoseconds for a memory IC to respond to its memory select pulse {the decoded
memory address signal and read or write contro] pulse). If the response time of the
memory is longer than 250 nanoseconds, the microprocessor must be requested to
wait. When the WAIT® line is brought to a logic 0, the microprocessor’s timing is
altered by adding clock cycles between the second and third clock eycle of the current
machine cycle. When the WAIT® is brought back to alogic 1, then the microprocessor
resumes with the third clock cycle. The one instance that extra WAIT states are of
particular interest to the interfacer is when IN and OUT machine language
instructions are executed. In these Instances, the 780 automatically inserts one WAI'T
state in these instructions to allow for the slower response times of peripheral
devices.

Throughout the experiments in Chapters 4, 5, and 6, we have assumed that
whenever an input port was ready to provide a data byte that the computer would be
ready to take it. This may not always be the case. For example, when the computer has
other tasks to perform in addition to servicing a particular input port, it may be busy
when the port needs to be serviced. We have already mentioned some of the
considerations of synchronizing the actions of a port with those of the computer when
the concept of handshaking was discussed. We saw that handshaking signals were
individunal lines connecting a peripheral device and the computer. Each line can
function as a one-bit input port to indicate the status of some aspect of the device. In
Chapter 3, we learned that individual bits that indicate the status of an operation are
called flags. The Flags (F} register of the microprocessor was described as a set of
individual bits which provided the 780 with information on the arithmetic and logical
operations such as the zero or nonzero status of the accumulator (A register}, whether

|
|
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a carry bit was used or not. In Chapter 4 other flags were described in terms of whether
a port was ready to provide or accept data, which were called Ready or Busy flags,
and which indicated by a logic 1 or 0 the status of ready/not ready, or busy/not busy,
or ready/busy. Finally, in Chapter 6, we saw that there is an End of Conversion
(EOC) flag assigned to one of the pins of the ADC0O804 analog-to-digital converter
IC. In this instance, the manufacturer of the IC labeled the pin as “INTR*” which
stands for “INTerrupt Request,”

The INT*® and NMI® are both request control inputs to the Z80 microprocessor.
They are interrupt requests which serve to literally interrupt the computer while it is
doing something else. They differ from each other in that the microprocessor can be
programmed to ignore the INT* signal but it can pever ignore the NMI® input. The
two machine langnage commands that control the INT* line are EI (Enable Interrupt)
and DI (Disable Interrupt). The terminology for being able to ignore the INT® signal
is that it can be masked, that is, prevented from being seen. The NMI*® stands for
“Non-Maskable Interrupt.” The distinction between a request and a flag is fairly
subtle. A flag signal is passive. It indicates the status of whatever it is supposed to moni-
tor, but it does not provoke any action on its own. It simply waits to be read by an
interrogating device such as the microprocessor. A request signal, however, is active.
It triggers the device it communicates with (such as the microprocessor) into some
form of action. The acknowledge signal from a device may function either passively
or actively. Thus the flag can be used to initiate action by functioning as a request.

Before getting into the details of interrupts, we shall finish our account of the rest of
the control signals with the HALT® flag. The HAL'T™ line is brought into a logic 0 state
when the machine language instruction HALT is executed. It would seem strange to
even have such an instruction if it were not possible to have the computer resume
operation. The halt state of the computer is more like an interminable wait state than it
is a power off state, The important paint is that if the computer receives an interrupt
request when it is in the halt state it will resume operation. The HALT® line is an output
control line from the microprocessor and can be used as a flag to other peripheral
devices to indicate the state of the microprocessor.

There are several kinds of interrupt requests. Suppose you are at home in your
comfortable easy chair reading an entertaining book {maybe that’s where you are
right now). The telephone rings. You finish the sentence you are reading, place your
bookmark in your book, and g0 to answer the phone. As you pick up the telephone
receiver, the front door bell rings. Before you go to the front door youfirst haveto ask
the person on the phone to hold. Now you can answer the door, then you can get back
to the phone, and finally, providing there are no more interruptions, you can return to
your first task of reading your book, The computer can be interfaced to operate in the
same fashion. When the computer receives an interrupt request it completes the
machine language instruction it is currently executing, justas you finished the sentence
you were reading when the phone rang. After the last clock cycle of the present
Instruction cycle, it acknowledges the interrupt. Because there is no specific control
line dedicated to an Interrupt Acknowledge signal, the Z80 implements an INTA® by
executing an JIORQ® pulse during an M1* pulse. Because the first machine cycle is
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always a memory read and never an input/output request, the two pulses are unique
and can be ORed together to form the INTA® control output. The next thing the
microprocessor does is to disable the interrupt request line so that no additional
interrupts can be made. The TS Interface circuit shown in Figure 4.6 shows the INTA®
control Iine.

Of course, the computer needs a program to perform every task it does. The main
task, comparable to your reading a book, is called the background program. The
interrupt program, called a service routine or foreground program, is a subroutine that
must be CALLed when an interrupt request is acknowledged. Just as you wouldn’t
answer the front door when the telephone rings, the computer must know where ( the
address in memory) to go. There are three ways that microprocessors can determine
how to execute a service subroutine. These are:

1 Multi-level/ priority interrupts
2 Single-line/Polled interrupts
3 Vectored interrupts

The Z80 microprocessor can be programmed to implement any of the three types.
There are three machine language instructions having the mnemonics, IMO, IM1, and
IM2, meaning Interrupt Mode 0, 1, and 2, respectively. When the microprocessor is
reset, it is automatically placed in Interrupt Mode 0 and the interrupt is disabled.

A multi-level (or multi-line) interrupt capability simply means that there is more
than one interrupt request line to the microprocessor. Because the Z80 has both the
INT® and the NMI”® lines it is multilevel. {The 8085 and NSC800 have several such
lines.) The microprocessor must have some means of deciding priority in case two
lines are simultaneously triggered. In the present case, the NMI request gets automatic
priority. The microprocessor also knows where to call the NMI service subroutine: it is
at decimal address 102.

Considering the INT® input, we find that the INT line can function either as a single
line or a vectored interrupt. We shall consider the vectored mode first. A vector is a
pointer arrow which gives a direction. As applied here, the vector will be a machine
language instruction which tells the microprocessor where to call the service routine.
This mode is obtained by executing the IMO instruction. In Mode 0, the micro-
processor expects to receive an instruction on the data bus from the device that
initiated the INT® pulse. It expects the instruction at the time it responds with the
INTA® signal (i.e., the INTA® pulse can be used actively to clock the instruction byte
from the device on to the data bus). Several devices may share (using logically ORed
signals) the INT® line. The usual method of vectoring is to “jam” one of the eight
restart, RST X, instructions onto the data bus. Under the conditions of a vectored
interrupt, the jammed vector is read from the data bus and placed in the
microprocessor’s instruction register. Because the RST X instruction function as one-
byte CALLs to one of the decimal addresses: 0, 8, 16, 24, 32, 40, 48, or 56; there are eight
possible interrupt service routines. Note, however, that RST 0 would be equivalent to
a pushbutton RESET.

Vectored interrupts can also be performed in Mode 2 using the IM2 instruction. In
this case, the vector is the low address in a look-up table of addresses. The high address

Control Signais

of the table is held in the I register of the Z80. The table holds the subroutine call
addresses. Because 128 pairs of addresses (high and low address bytes) can be stored
in a table having the same high address (I register contents), Mode 2 vectors allow for
extensive interrupting capabilities.

The Mode 1 interrupt capability of the Z80 is a true single line interrupt that can be
implemented by the IM1 instruction. In this mode, when the INT® line is activated
with a logic 0 pulse, the microprocessor automatically performs a RST 56 instruction.
Thus without having a vector jammed onto the data bus, the program calls the
subroutine at decimal address 56. Mode 1 interrupts are obviously the simplest to
implement. They also are the most limited, because only one service routine can be
called. This does not mean that the system is limited to only one interrupting device.
When it is desirable or necessary for more than one device to be able to interrupt the
computer, the request lines can be logically ORed together to drive the INT® line.
Because the computer can only call one service routine, that routine must consist of a
means of determining which device originally triggered the request. This is done by
“polling” each device through an input port and having each device set a flag to
indicate that it triggered the request. Once the device is identified the subroutine can
cause an additional branch in the program to service the particular device.

1t should be noted that because all the branching in interrupt servicing, whether
vectored or polled, is by means of subroutine calls, once the device has been serviced,
a return instruction is all that's required to have the computer resume its background
task. Of course, if the microprocessor’s registers are used in the service routine, their
contents must be saved and restored (pushed and popped) before returning to the
background program. It should also be recalled that when an interrupt request is
received by the microprocessor, the INT? line is immediately disabled. Therefore at
some point in the interrupt service routine the EI instruction must be executed in order
to re-enable the interrupt line. Usually, the EI instruction is given just before the RE'T
instruction when the service routine has been completed. In some cases, however, it
may be necessary to have the El instruction executed as soon as possible in order not to
lose an interrupt request from another device. This is an extremely treacherous
condition because the computer can become “interrupt bound” and spend its time
trying to service interrupts which are interrupting interrupts. One final comment
about the EI instruction is that the microprocessor enables the interrupt line after the
instruction following the EI instruction. Thus, if that is the RET mstruction, the
interrupt bound condition can never develop because the computer will always be in
the background program when an interrupt request is received.

It may strike you that interrupt interfacing is a complicated affair. I $0, you are in
agreement with the authors. We have surveyed these topics in order to provide vou
with some background material on these aspects of interfacing. The techniques are
rather advanced and not easily implemented. This is particularly true in reference to
the Timex/Sinclair B&W models because they use both the INT* {192 times for each
NMI®) and NMI® (50 to 60 times per second) lines to provide the video display, We
included the INT® and INTA® lines on the I/0 Interface board for advanced projects
which go beyond the scope of this book. In our experience, the best method for
interfacing interrupts is the simplest. One of the simplest ways, particularly in a
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O appendixa o
Z-80 decimal assembler

The Z-80 Decimal Assembler consists of six (6) 3 X 5” charts labeled A1 through A6.
In their final form, charts Al and A4 (instruction mnemonics) form an envelope
opened at its right end. The other four charts form two slides which insert into the
envelope, Charts A2 (decimal code table) and A3 (timing table) are printed onreverse
sides of one slide and charts A5 (decimal code table) and A8 (code conversion table)
are printed on reverse sides of the second slide.

To assemble the Assembler, you will need 33" X 5" index card, six3” X 5” sheets of
clear laminating plastic of the type used to protect documents, rubber cement,
scissors, a razor knife, and g metal-edged ruler,

STER T Carefully cut out the four charts by trimming along their cuter borders with scissors, [
desired, the charts may be reinforced by mounting them on index cards with rubber cement,
Doing each chart in succession, remove the backing from a piece of the taminating fiim and
caretully align the right edges of the chart and fiim. Let the fiim contact the chartin a smooth tight

Rub over the entire surface 1o ensure complete contact, and tim the ©XCess famination,

STEP2 Usethe razor knife to remove the “windows” marked “out out” oncharts Al and A4
Use the ruler to guide the knife, Three or four light scribes work better than one deep cut. For best
results, trim each window to leave justatrace of itg border. When cutting, piace the ruier over the
window to prevent tearing. Use scissors to cut cutthethumb slots onthe right edge of each cover
chart,

STEP 3 Remove in one piece the three-sided border of each slide card by cutting from the
top, left end, and botiom of each. This border ig about 5/16inch wide, Keep the borders with thair
respective sfide charts. Now measure off a similar 1/4 inch three-sided border from the index
card and cut i ou,

STEP 4 Using rubber cement, mount each slide bordertothe back side ofthe corresponding
cover card, Finally, clean all axcess cement from the backside of each cover and cement the
1/4-inch border between the cover borders. Note that the top edge of one cover joing the bottom
edge of the other cover. To tomplete the job, you may want to bind the thres sealed edges with
1/2-inch Scotch brand “Magic” tape. insest the two slides back-to-back and work in and out fo
remove any excess rubber cement,
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CHARTS A1 AND A2

Z-80 Decimal Assembler

Lpli7dapll 6dBp 1 5dDpll4dCpl 13 SpT ] 2dApt 19dNpShd
Lpl17dRpl16dEPL 15dDp1LadCpl 13dBp1 ] ZdAplL9dNp5ad

BRANCH STAGK MATH
’ST 0 T94] LD SP,HL 74% RLCA 7 ALD A,
RST 8 207 LD SF,IX 221 249 RRCA 15 ADC A,
RST 16 215 LD SP,I¥ 253 249 RLA 23 5UB
RST 24 223 REA 3l SBC &,
[ o RST 32 231 BX(SPY HL 227 AND E!
Ll % RET 40 239 BX(SP) ,IX 221 227 DAA 3 XOR 2
wd RST 48 247 EX(SP), TV 253 227 cel 47 OR, H
o < RST 56 233 £ _DE,HL 235 5CF 55 cP ¢
£cr 53 IRC
1% = PUSH AF ELE DEC
h v & i PUSE BC 197 12 < d < 189 -
w 2 Nz, e PUSH DE 203 0% W< 255 am ',
AR z, N PUSH WL e I ) aw iy
<L 5% u I e, y PUSH IX 221 229 X=(Ikvd) p = 25 aoopv, | ® u
RL: 2 |e,m 7 PUSH IV 253 729 Yo{f¥+d) p = 253 we | § H
»@ g | o, 8 BEG w
<T 2s [ PN B POP AF i3] U5, (B0 73 H
= e oY PGP BC 193 LB A,{DE) 26 W HE
- Q5 MR POP DE 208 LD A, (K%} 58
[ 1 POP HL 225 1D (BE),A 7 Lo &,
S % I JP GAL) 233 POP IX 221 225 LD (DE),A 18 1D B,
= g JP {1%) 221 233 POP TY 233 225 B (N} LA 30 LB ¢,
= JE LEYY 253 233 p, §
& 3 W B 751 L0 WL, (N ¥ w2
v B pis 43 LD TX, (NN) 221 42 WKl Y
[ I8 A, () 219 LI Y, (M) 253 42 [
m 3 o0UT (N),A 213 Lo £xm) =L 34 LD (HL),
HALT 118 Lo {SN),TX 22} 34 LD (Ix+d)
& NOP 0 1D (UN), 1Y 253 34 LD (1%},
Copyright 1983 CONTROL TRANSFER
by P. E. Fleld
Ypilad Xpl34d W {36 L 133 0 132 £ 131 B 130 C 129 B 128 A 135 ¥ 198
Ypi4ld Rplé2d W 142 L 141 % 140 ¥ 139 0 138 © 137 B 136 A 143 N 206
Ypl50d Xpl50d M 150 L 349 W 148 B 147 0 146 C 145 B 144 A 151 N 214
¥pl58d XpiB8d M 158 L 157 H 156 € 155 D 154 C 153 8 152 & 159 N 222
Vplo6d Xplbd M 166 L 165 H 164 E 163 D 162 C 161 B 160 A 167 ¥ 270
YpiThd Hpi?4d M 174 L 173 % 172 E 7L B 170G 169 B 168 A 175 ¥ 738
TpiB2d Xpl82d M 162 L 181 K 180 B 179 D 178 € 177 B 176 A 183 ¥ 246
TpI90d Xpl90d M 190 L 189 H 188 E 187 D 186 ¢ 185 B 184 A 191 N 254
YW ps2d X p52d M 52 L G4 H 36 E 280D 200 12 B 4 A 60
Y p53d K pS3d M B3 L 45H 3T E 29D 20 138 5 A 6
RET €ALL JP Z0F 205 195
RET ¢aLL JF 192 196 194 52 57 HE 61 PE 25 B9
RET CALL JP 200 204 202 IX p&l 5P p57 BE p25 G B9
RET CALL JP 208 212 210 1Y pl SP p57 BT p25 BC p9
REY CALL JP 216 220 21R 1Y pis ¥ p35 P 51 L 35 pE 19 Be 3
RET CALL JP 224 228 226 I¥ ph3 IX p43 8¢ 59 H 43 DE 27 BC 11
BET CALL JP 232 23§ 234
RET CALL JP 240 244 242 Y p33 IE P23 $E 4% EL 13 pE 17 1
RET CALL JP 248 252 250
Ypl26d XplZ6d ¥ 126 L 125 H 124 £ 123 D 122 C 121 B 120 A 129 w62
X pld X plld M 70L 69H B8 E 67 D 66 658 64 A K 6
Ypi8d X p78d M TB L JFH T6E 75D FEC 73 B 22 A I N 14
Y p86d X p8Ed M 86 L 854 B4 x 83 D 82C 81 B 80 A 8 N 22
YpShd K phd M 94 L $3IH 92F S1D S0C B9 B B8 A 5 H 30
tpI0Zd XplO2d M 162 L 101 M 100 E 99D 98 c 97 B 96 A 103 N 38
Ypli0d Xpll0d M 110 L 109 & 108 E 107 6 106 C 105 § 104 A 111 ¥ 46
LIL7 K 1L6 B 115 D A€ (13 8 112 A 119§ 54
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CHART A3

Z2-80 Decimal Assembler

T ECHeT ] T W T 160 i o 404
@ U1 | v owi| 9 otloiz 0100 51 Tt HSN
Sopnle | gl W
VAN ANVNIG] K30 AGVNIG| XaH AVWIG| X4H AMYNIG €t Y DUS/00Y
EET] 0N LA ¢ a1 gav
am| (m) ar € 5T 9 |sau/1as
§1=1 LVH LI A g jue
v atl pei] 1§ sy [T | LR FLETE
yop a1} H'aa xa vy [n/1zand | o1 9 [ 1 93¢ /ONT
W'y otfaviay x| € at a3y 61 L ¢ v {mEH v
1y a1 mi| ot ot o1 o [ Tt (ds) w3
£=3 L0 1 S z! ar LI Tras a1
BED) W £1 8 FHIT ¥ o1 0T M an
(&/3) ar 13 ti o1 o1 Tivs |0z 91 0% LU0y |- ()~ a1
ThI )t 91 91 APOTY 61 01 £ | a1
et el eni wsyes |'pUOIU] sT & LWL w[TMaan
agnTosqyY Ao pUo] AKX T S P(A/%) (M) (du)i N 3 jpaosusieyey

NOTLDMEESNT/ 3 S3IDAD WG

201




|
I
I

CHARTS A4 AND A5

Z-80 Decimal Assembier

BINZ d 16 BIT 7, CYeD7-N0esD? RLC
DISPLACEMENT 3R @ 24 BIT 6, DB T -POCY RRE
(4) RELATIVE |JR Nz,d 2 BIT 5,§ ., CY D7 ~DOLY RL | @
TO PC = OPCODE |JR 2,4 40 BIT 4,] 8 CYmaD? ~DO+CY RE | B
ABDRESS + 2 JR NC,d ] BIT 3, CT4apF ~D O} SA | w
JR C,d 56 BIT 2,| & 7D} ~BOH+CY spa | €
EX AF, AF? & BIT i, DeaDF ~D Y SRL
BXX 217 BIT u,
# REGISTER SET 7, gy RES 7
BT  FLAG CONBITION SET 6, PREFIX(P): 203 RES 4,
7 OMIKUS STIGE DY = SET 5,0 . -128 < d < 127 RES 5,4
4 ZERO A=0 SET 4, 2 0 << 255 RES 4, 2 -
4 HALF CARRY AFTER DAA OF SET 3,i L M o= (HL) RES 3,0 2
3« EVEN PARITY AFTER LOGIC OP SET 24 Z e =2 P4 ReS 2, 2 »
OVERFLOW 278 CPL. ARITH SEE 1, Yh__ = 233 P 4 RES 1, =
L CARRY AFTER ARITH OF ST O, — — RES 0, v
BLOCK TRANSEER: { BC = DOWNCOUNT )] { B = DOWNCOUNT ¢ = PORT }
(HE) = 01 Tec] fCET Tt [THE 163] [40TT 163 EINGE B
SOUREE  (LDD 168 (CED 169 1w 170} joute 171 ot {cy | 2
(BE) = LOLR 176} [cPir 177 {IKIR 178} lovie 179
DESTEMATION [LODR 184 |crog 18% |1amR 186 {orpe 187
G 78] [RESR 59 [Lb 1,4 7t [uge 58 ADC HL,f 2
EG 86| IrpTi 77 |1 R,a 79 5BC HL,| B
M2 9% 1D AT 87| [arp 103 1D (M, 3
1D AR 93] {RLD MY pLpamy] D
TRI26MRL26M 1261 1258 124E 123D 122¢ 1218 120A }27¥% 6X% &M 6L SH 4E 3D 20 1B o 7
YALIBRALLGM L18L L1174 L16E 1150 LLAC LLYB 1128 LI9%* 14%* L4M 14%L I3H 12E 1iD 1OC 9B BA 15
UHLAOX*LLIOM 110L 1OSH LOBE 1078 {06C 10SB 1044 L11V¥% 22X 228 221 218 20E 190 18¢ 178 16A 23
FHI0ZX4L02M LO2L LOLH LODE 99D 980 97B  $6A 103Y* 10X* 30M 305 29 288 270 266 258 %A 3%
T OQ4%% G4M 94L 93H 92 91D 96C BY9B  BBA  95¥* 38K+ 3BM 381 3TH 36E 35D 34C 3B 324 39
Y* 8EX* 86M HEL H5H 84 83D BIC IR BOA BTYH 46X* 4EM 461 ASH A4E 43D 420 AIB 4OA 47
Y* T8RN JBM FBL FTH TEE 73D JAC FSB T28 7HYR G2N% 62M 621 LN 6OE $9P SBC 57B 56A 63
Y® JOX* TGM JOL 6YH 68E 67D G66C 658 644 T
YARFARX254M 2341 253H 2528 251D 2500 2498 24BA 255YAIS0X*IOOM 190L IBGH [BBE 187D IB6C 1858 1844 191
YHILERAZH6M 2460 245H 244E 243D 2420 2618 2404 247YFIS2XYI82M 18IL I1SIH ISOE 179D I7BC 177H 1764 183
YXRIBYA2IEM 23BL 23TH 236E 235D 2340 233B 2324 239YRIV4X*ITAM 174L 1730 1YZE 171D 170C 169% 1684 175
FR2ZUX*IIOM 230L 2290 228E 2270 2260 Z25B 224A 23IYXI6BXX166M 166L 165H 16GE 163D 162C 1618 160A 167
YRI2AXXI2IM 2220 2214 220E 219D 2IBC 2I7B 216A 22TV*1S8XXISEM 158L ISTH 1S56E 155D 154G 1538 1524 159
THZUEXAZ14M 2140 Z13H 212E 211D 210C 2095 2084 20I5Y*130XrIS0M LSOL 149H ta8E 147D 1460 145B L44A 151
TFIO6X*206M 206L 205H 2048 2030 202C 2015 2004 207YSL42XA1A2M 147L 14IH L40F 138D 138C 1378 136A 143
THIOBX*198M 198L JOTH 196E 195D 194C 1935 1924 100Y+13AX*134M 1341 1338 I32E 131D 130C 1298 128a 135
L MOLYE 96E 8BD BOC 728 644 120
L 10sE $VE 8y 810 738 63A 121
sP122 HL106 DE 30 B 74
SP114 HL 98 o 82 #C 66
SP115 HL 99 DE 83 BC 67
SPE23 H107 DE % BC 75
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CHART A6

Z-80 Decimal Assembler

OeREs (004 a¥8¢ 0040 o0& 51 ag 8 o - o 3 7 sn I8 {4
wpELs  0oed #goe Q03¢ 22 OE 1 30 ~ u ¥ N < . 1 B - <
BYTES 0004 97¢8 Godo 80z 04 £1 G0 4 w { w = - s WL |4
TE16Y 0002 T{OL G030 1 a0 zi o0 H T \ 1 > ’ 84 41 |2
9g0gY 000" BTRe  OOHO 91 08 it € 1 | i b ’ + 988 Ia )8
Q9607 000V 05T OGYO 091 ov 01 Yo 2 o z e s » ans 47 |V #
Y989E Q005 YOLT  CO60 w1 06 & 60 A T A I [ { WA 1H (6 %
89LZE 0008 8YOT  DOBO gttt 0% g8 80 ® H X H 8 } N3 59 |¥ a8
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9LERT  DODS 9EST 008¢ 96 0% % 80 A E A E:4 9 2 RAS WOV |9 E
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O appendix b o

component list*

EXPERIMENT NUMBER

CHAPTER2 CHAPTER4 CHAPTERS

COMPONENT 1234586

1234586

123456

CHAPTERS
123456

INTEGRATED CIRCUITS
74L500 1-1173~
74L502 1emmwe
74LS08 1o
74L520 “l-em-
74L532 lrwee-
74L374

74L875

74L590 =1~
741,583 Sttt B

74121

74L5125
74L5138 00000000 eeea- 1
7415244
74L5373

B255
8251

5568

AD&58

ADCO804

M358

MME8167
CRYSTAL
32768 Hz
RESISTORS

120
15¢
330
470
1.0
3.3
4.8

ohm {matched)

ohm

ohm

ohm 111541
Kohm D ———
Kohm e
Kohm

-1-11-
-1-11-

11-eun

111-88

---888

R |
1mmanl

111111
I I P
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208 Appendix B

EXPERIMENT NUMBER continued

CHAPTER2 CHAPTER4 CHAPTERS5 CHAPTERS®
COMPONENT 123456 123456 123456 123456

5.1 Xohm B i-w1-
10 Kohm wmm=] -183-~= 111111
15 Kobow 2
22 Kohm 1l
10 Kohm (Potentiometer) ---222
CAPACITORS

22 pF Polystyrene - T
150 pF Dise 111111
0.01 u¥Diseo BemurB
0.10 uF Diso m~e--12
C.2 uF Dbisa B
0.47 uF Dise l1-1-u-
1.0 uF Tantalum mew]
10.0 uF Tantalum : —e-=11
POWER EQUIPMENT
Transistors/D4OK(GE) or MPSU4S S LY
3-Vde Power 8upply or batteries ~leman ~l----
Stepper motor power supply wemloa
Iransformer/i2-Vac S¢c. 1
TRANSDUCERS
LED/MVE0 111548 111-48 eeeo- 1 emee. 1
Switch/8 DIP --=111
Switch/SPDT -=311-
Joystick/4*200 Kohm R
Optical limit switch/TRW OPB861( Arrow) -18---
DC motor/3-V Perm. magnet (Radio Shack) e 1--
Stepper motor/e.g., BAUOY05 (Septor) wemlow
Photoresistor/Cds 3~-Megohm dark {Radio Shaock) wlewon
Strain Gage/e.g., CEAOB125UW120 (Meas. Group) waBmmn
Temperature Sensor/AD590 (Analog Devices) ~=ma}l
Solid State Relay/e.g., Sigma 226 (Allied}  ...._ 1
Lamp/12V, 80watt 7 1
HARDWARE
Wirewrap IC sockets/16 pin ---122
Opague diso, 5~10 cmdiam. S TR
Transparent disc, 5-10 om diam. B
Hacksaw blade R ET
C Clamp ==l

* Number listed is the quantity required for the particular experiment indicated by the chapter and
experiment number column. Total required for all experiments is the largest number entered in the

row for the particutar item. Refer to experiment description for any Special comments concerning
a component.
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O appendix ¢ O

suppliers

GENERAL ELECTRONIC CONPONENTS
AND INTEGRATED CIRCUITS

DIGI-KEY CORP, JRD MICRODEVICES
P.O. Box 877 1224 §. Bascom Ave,

Thief River Falls, MN 58701 San ;’g;e, CA 95128
800-348-5144 800-518-5000

ADVANCED COMPUTER PRODUCTS JAMECO ELECTRONICS
P.O. Box 17329 1355 Shoreway Road

Irvine, CA 92713-7329 Belmont, CA 94002
800-854-8230

ALLIED ELECTRONICS ARROW ELECTRONICS
4235 28th Ave. 4801 Benson Ave.

Marlow Heights, MD 20748 Baltimore, MD 21227

SPECIALTY MANUFACTURERS

ANALOG DEVICES MEASUREMENTS GROUF

P.O. Box 280 P.O. Box 27777

Nerwood, MA 02062 Raleigh, NC 27611

SEPTOR **GROUP TECHNOLOGY, LTD.
i P.0. Box 87

4605 Ripley Dr.

El Paso, TX 79922 Check, VA 24072

**TIMEX/SINCLAIR interface buffer and experiment kits
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O appendix d o

glossary

A Accumulator register.
igggﬁgﬁh&;ﬁ The time required to read a memory location.
ATOR A special-purpose register in which th i i i

operations o o] s Ich the results of arithmetic and logic

i;gA( :synlc;hr)onous Communications Interface Adapter. See UART.
“Ato D Analog to Digital: the process where ! i i i

digitel ropresentat an analog signal is converted to its
ADC Analog-to-Digital Converter: a device which performs an A/D.
;‘:ggggg‘s& 5 {; i;e aumber representing a specific memory location.

The set of parallel signal lines used by th ;

dostination for s o 01 Y e processor to select the source or

QII:I();ORITHM A step-by-step specification for the solution of a problem.
Hf_&I\.IUM.EBIC Relating to the alphabetic, numeric, and symbolic printable characters
ALEE d§t1n§urshed from graphics and control characters.
rithmetic Logic Unit & device which performs the fund i
: ' tal

manipulations of a digital processor. ? el madhematical

ﬁggLOT(]J} }A t?/pe of signa:i capable of assuming any value within its operating range.
© 0gic operation defined by the condition that only if ali i i

is the conclusion {output) true, o premmises (inputs) are true

ARCHITECTURE T he composition, function,

T and relationship of the logic elements of 3

ASCH (“as-key”) American Standard Code f i : i
for alphan e e oan St Character;‘:{ or Information Interchange: a seven-bit code
ASSEMBLER A computer program w
processor into machine code,
ASSEMBLY LANGUAGE The word-
instruction set.

hich converts the assembly language of the micro-

oriented mnemonic form of the microprocessor

constant.

gggcgﬁiﬁkcgiﬁgﬁiﬁak the four bit binary representation of the decimal numerals 08,
A program used to mea th f
under well-defined conditions. e e performance of a computer

BIDIRECTIONAL Signal transmission in either direction in a wire.

E
i
i
H

I
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BIDIRECTIONAL PRINTING Capable of printing lines either forward or backward.

BINARY COUNTER A device having outputs of assigned binary weight (1, 2, 4, etc.) which
provides a sequential count of an input signal transition.

BINARY NUMBER A number whose digits double in value; composed of the numerals
0 and I

BIT Contraction of BINARY DIGIT. The positional value of a bit is a power of 2
(le,2%%nforn=0,1, 2, etc.) counting from right to left.

BREADBOARD Any device used to mount and interconnect electronic components for
prototype circuit development,

BOOLEAN LOGIC An algebra named after George Boole using quantities that take values
of TRUE and FALSE and consisting of the operations AND, OR, NOT, ete,

BOOTSTRAP A program used for starting the computer which usually sets up the 1/0
devices and loads the operating system.

BOUNCING The mechanical vibration of switch contacts on closure causing many pulses
to be transmitted on the signal line.

BRANCH To select between alternate routes, as in the flow (sequence of instructions) in a
program.

BUFFER An intermediate signal conditioner between the transmitter and receiver of a
signal.

BUG  An error in either & cireuit ( hardware} or a program ( software). See DEBUG.

BUS A common signal carrier, typically applied collectively to a set of functional signals
such as the Data Bus, Address Bus, or Control Bus.

BYTE A group of eight contiguous bits. A byte can represent 256 different values.

€ The abbreviation for the Carry flag,

CALL  The instruction mnemonic to transfer the program to a subroutine.

CARRY A status bit in the FLAGS register of the microprocessor which indicates whether
a carry {borrow) has been created in an arithmetic operation.

CHANNEL A nonspecific term denoting a data path between devices.

CHIP A small rectangular silicon die cut from a wafer. Integrated circuit packages are
commonly called chips.

CHIP SELECT The ENABLE control input line on an integrated circuit.

CLEAR The control input line or the corresponding signal which places the output of a
device in the logic 0 state. Compare to SET and RESET.

CLOCK A square wave generator ( oscillator) used as a reference timing source. Also the
signal derived from such a device.

CLOCK PULSE A complete signal transition from one logic state to the other and back
again, either Positive (0-1-0) or Negative (1-0-1).

CLOCK RATE  The frequency of a clock.

CMOS {“sea-moss”) Complementary MOS, a fahrication technology for chips having very
low power consumption.

CODE A representation of one set of symbols by another set, one set typically beinga binary
number representation.

COMPILER A program which translates high level language commands (source code) into
machine code (object code). The object code is then capable of being executed. Compare
to INTERPRETER.

COMPLEMENT To change the state of a bit.

CONTROL BUS  The set of individual signal lines used by a processor to implement the
means and timing of data transfer.

CPU  Central Processing Unit, the computer module in charge of fetching, decoding, and
executing machine code instructions.
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CR Carriage Return, the printer action that brings the print position to the left margin; the
corresponding ASCII control character.

CROSSTALK Interference between two signals.

CRT Cathode Ray Tube, the phosphor display tube used in video equipment.

CRYSTAL The quartz crystal whose piezoelectric properties provide very accurate fre-
quency generation for clock timing.

CURRENT LOOP A serial communication technique using the presence or absence of
current flow in a twisted pair of wires for digital data.

D  The abbreviation for a Dats input or output line or signal.

D LATCH A type of flip-flop which functions as a one-bit memory device.

D/A (“D to A”) Digital to Analog, the conversion of a digital number into a signal level
proportional to its binary value.

DAC Digital-to-Analog Converter, a device which performs a ID/A.

DATA BUS The set of parallel lines that carry the information being processed by the
microprocessor.

DEBOUNCE To eliminate the signal fluctuations generated in mechanical switching.

DEBUG  To seek and eliminate the errors in a circuit or a program.

DEC Decrement, the instruction mnemonic to decrease the contents of a register by one.

DECODE To convert an n bit parallel input to select (activate) one of a maximum of 2°°n
independent outputs.

DEMULTIPLEX The technique in which a common source can be selected to supply one
of many destinations,

DEVICE CODE  The eight-bit address of an I/0 port or the corresponding decoded clock
pulse.

DEVICE SELECT PULSE The clock pulse generated from the device code and an input
or output control pulse that is used to activate an 1/0 device.

DIGITAL Having discrete states. Compare to ANALOG,

DIGITAL ANALYZER An instrument used to troubleshoot digital circuits by detecting
logic states and timing characteristics.

DIODE  An electronic device which allows current to flow in only one direction.

DIP {“dip”) Dual In-lue Package, an integrated circuit casing characterized by two parallel
rows of leads (pins) on 0.1 inch spacing.

DIP SWITCHES A set of switches which can be imserted into a DIP socket.

DISABLE To prevent from functioning. Compare with ENABLE,

DISK  Any disc-shaped magnetic storage medium.

DISKETTE Any small flexible disk contained in a protective jacket and commonly used
with personal computers.

DISPLAY A computer output device used to display information.

DMA  Direct Memory Access, a technique for very fast data transfer in which a processor
temporarily relinquishes control of its memory to another processor.

DOS (“doss”) Disk Operating System, an operating system program which implements a
disk system for off-line storage.

DOT MATRIX The technique for printing characters using a rectangular array of dots.

DOUBLE PRECISION Program implemented arithmetic in which numbers are stored
using twice as many bits as usual.

DRIVE Any electromechanical device used to access different segments of off-line memory
storage, such as tapes or disks.

DRIVER A current amplifier used to increase the power of a signal. Also a program which
controls a peripheral device,

DUMP  To transfer the contents of memory to an off-line storage device.
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DUPLEX A bidirectional serial communications link between two terminals. See FULL
DUPLEX and HALF DUPLEX.

DYNAMIC MEMORY A type of R/W memory IC characterized by high density which
requires recurrent addressing to be maintained. See REFRESH.

ECHO To send the code of a received character back to the device that transmitted it.

EDITOR A program designed to facilitate entry and modification of text, especially in
reference to programming.

EMULATE To simulate in real time.

ENABLE To permit to occur. Also the corresponding circuit input functioning either as a
Clocked or Gated control, _

ENCODE To output a unique n bit value based on which one of 2°°n independent input
lines is activated.

EPROM (“E-prom”) Erasable Programmable Read Only Memory, nonvolatile static
memory stored in an integrated circuit which can be erased and rewritten.

EXECUTE To perform or carry out.

F The FLAGS register of the 80 family processors consisting of independent bits which
reflect the status of the most recent arithmetic/ logic operation.

FETCH To retrieve, hence to obtain an instruction from memory; the first step in a
computer instruction cycle,

FLAG A one-bit status indicator signifying one of two possible states: plus/minus, ready/
busy, etc. Used by microprocessors to make branching decisions,

FLIP-FLOP A digital electronic device having one or more inputs plus a clock input and
one independent output which reflects the status of the input(s) at the time of the last
clock input signal.

FLOPPY DISK See DISKETTE. ‘

FLOWCHART A diagrammatic representation of a program.

FORTH An intermediate level programming language characterized by the use of a
parameter stack and a return stack.

FULL DUPLEX A serial communications link between two terminals in which both can
simultanecusly receive and transmit information.

F/V  Frequency-to-Voltage, the conversion of an analog signal to a voltage proportional to
its frequency.

GATE A digital electronic circuit or corresponding input signal which controls the flow of
information between the input and output of a device.

GND  CGround, the zero voltage potential to which all other voltage levels in a circuit are
referenced; not necessarily earth potential.

H A suffix used with numbers to signify hexadecimal base.

HALF DUPLEX A serial communications link between two terminals in which either can
transmit but not simultaneously. .

HALT The state of a computer in which program execution is suspended. Recovery is
possible either by Reset or Interrupt.

HANDSHAKING A synchronizing technique for data transfer between two devices using
request and acknowledge control signals.

HARDWARE  The circuitry and physical components of a device.

HEX Shortened form of hexadecimal, the base 16 representation of four-bit numbers using
the numerals 0-9 and the letters A-F for the decimal values of 0-13.

HIGH BYTE The more significant byte of a 16-bit number corresponding to bit positions
8-15.

HIGH LEVEL LANGUAGE Any programming language having easily invoked commands
which perform complex tasks, such as ALGOL, APL, BASIC, C, COBOL, FORTRAN,
PASCAL, and PL/1.

—m
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containing the chip,
IEEI;Z. (“1 triplebE”) Institute of Electrical an
active in esta lishing standards of signal seci
gnai assign t :
IMMEPIATE ADDRESS A mode for accesg g ooy o race
explicitly specified.
INC

INITI{\L'IZE To specify the conditions and start-up v
beginning of 5 process or program.

I/0 Input/Output, the signals,
system to its surroundings.
INSTRUCTION The simplest sin
a one-byte operation code. The b

and test operations.

alues of all relevant parameters at the

devices, or programs associated with connecting a computer

out an instruction, The cycle consists of 3 Fe
and Execute steps.

INT Interrupt, a control input ty the micro
asynchronously Tequest service, ‘

after it is fetched from memory,
-K FLIP-FIL, i i
J LIP-FLOP A type of Hip-flop which has two centrol inputs which are interdepen.-
Ir h}ump, the instruction muemonic to branch either conditiong]
KECY }:;raogmg the value of the Program Counter register,
‘ AB?I) The group of switches encoded as alphanumeric symbols and d as
DPrimary input port i micmcomputers et ae the
LATCH SeeD LATCH.
LCD  Liguid Crystal Display,
LD Load, the instruction m
& source register.

LED Light Emitti i | i i i
iy itting Diode, a dinde which emits colored light when current flows through
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nemonic for the transfer of data to a destination register from

L Olg li]orizontal position; the corresponding ASCII contral character
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o the program fo et than once hefore the lnear flow

: ; f . rresponding to bit positions 0-7.
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LSI Large Scale Integration, used in referring to integrated circuits having between 500
and 5000 transitors.
M Any memory register whose address is held in the HL register pair of an 80 family
processor, also denoted by “(HL).” The abbreviation for the Sign flag (Minus).
MACHINE LANGUAGE The set of binary codes that form the instruction set of a micro-
processor,
MAINFRAME A very large computer supporting many terminals,
MASK  To obscure. Also a binary code used as a pattern to selectively set or clear individual
bits in 2 binary number. ‘
MASKABLE INTERRUPT Interrupt request control input line which must be enabled via
an instruction and may be disabled with an Instruction.
MASS STORAGE  Off-line storage media characterized by very large capacity and relatively
slow access times and typified by tapes and disks.
MEMORY The digital devices that store binary information in registers.
MEMORY MAP A table showing the allocation of regions of system memory for various
programming functions in terms of the limiting addresses.
MEMORY MAPPED I/O An addressing technique in which /O devices are accessed as
memory registers.
MICROCOMPUTER A computer system consisting of a microprocessor, Memory, sup-
porting digital logic circuitry, and 1/0 interfaces.
MICROPROCESSOR  An LST circuit which functions as a CPU.
MINUS FLAG The sign bit in the Flags register of the processor used to indicate (by a
logic 1) a negative value (MSB = 1) resulting from an arithmetic operation,
MNEMONIC A memory aid, the shorthand notation of a word describing the action of a
machine code instruction. Examples include LD, JB, INC, etc.
MONITOR A program implementing the fundamental set of commands required to operate
a computer system.
MOS (“moss”) Metal Oxide Semiconductor, a fabrication technology used in producing
most L3I and VLSI chips.
MOSFET (“moss-fet”’) MOS Field Effect T ransistor, a type of transistor having a Gate,
Source, and Drain rather than a Base, Collector, and Emitter.
MSB  Most Significant Bit, the bit in the leftmost position of an n bit number and having the
weight (positional value) of 2% n—1},
MSI Medium Scale Integration, used in referring to integrated circuits having between
30 and 500 transistors.
MULTIPLEX The technique where many sources share a common destination. To select
one from many.
MUX  Abbreviation for MULTIPLEX.
NAND (“nand”) The NOT AND logic operation where the result is the negation (com-
plement} of that obtained by the AND operation.
NC Non-carry, the abbreviation for the complement of the Carry flag.
NESTED One routine contained within another routine.
NIBBLE Usually four bits, the lower or upper half of a byte.
NMI  Non-Maskable Interrupt, an interrupt request control input line which is permanently
enabled and cannot be disabled by software.
NMOS (“N-moss”) The negative channel MOS technology introduced after positive channe!
MOS.
NOISE Random transients or other interference on a signal.
NOP (“no-op”) No Operation, the instruction mnemonic that alters no registers,
NOR The NOT OR logic operation in which the results of an OR operation are com-

plemented,
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NOT The logic operation of complement in which the state of each bit is changed.

NUMBER CRUNCHING Slang expression for performing arithmetic intensive operations.

NZ Nonzero, the abbreviation for the complement of the Zero flag,

OCTAL The base 8 representation of three bit numbers using the numerals 0-7.

OP AMP  Operational Amplifier, an electronic circuit which functions as a very high gain
de amplifier,

OPCODE Operation Code, the byte of machine code that distinguishes the instruction
from prefixed or suffixed bytes used as operands,

OPEN COLLECTOR Ap older circuit technique used to connect outputs together for
bussing signals, now replaced by three-state devices.

OPERAND The byte(s) in a machine code instruction

OPTO-COUPLER  See OPTO-ISOLATOR.

OPTO-ISOLATOR A device which conver
converts the light back to current so that t
electrically isolated from each other,

OR  The logic operation defined by the condition th
is the conclusion ( oufput) false,

OVERFLOW A flag bit used to indicate that an arithmetic result is too Iarge.

OVERVOLTAGE PROTECTION Circuitry to protect a device from undesirable surges
in the ac power line voltage.

P Abbreviation for the parity flag bit. Also the abbr
Minus (sign) flag {i.e., Plus).

PACKED BCD Storage of two fo

ts current pulses to light flashes and then
W0 systems can remain optically coupled but

at only if all premises ( inputs) are false

eviation for the complement of the

ur-bit binary-coded decimal digits into one eight-bit

register,
PARALLEL The processing, transmission, or storage of two or more bits or signals
simultaneously.

PC Program Counter, the 18-hit processor register which holds the address of the next byte

to be fetched by the processor. Also an abbreviation for Printed Circuit.
PERIPHERAL

£l

especially in reference to ICs,

PIO Programmahle Input/Output device, an interface IC which multiplexes the data bus

to two or more eight-bit ports that can be configured as input or output by commands
from the processor.

POP T

PORT An input or output device identified by a specific address or device code.
PPI Programmable Peripheral Interface, see PIO,
PROGRAM A sequence of instructions or commands which

results in the execution of an
algorithm or task,

, functions, and statements that can
be used to write a program. See HIGH LEVEL LANGUAGE,

PROM  Programmable Read Only Memory, strictly a read only memory that can be
programmed by a user only ope time; commonly an EPROM.

PROM PROGRAMMER An addressing device used to write binary data into a PROM or
EPROM; may or may not be a computer peripheral.

PROPAGATION DELAY The time required for an input signal to translate into an output
signal,
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PULL UP RESISTOR A circuit technique to hold a line at a specific voltage while still
imiting the amount of current drawn. ‘ . ‘
i’UE;ngEmgA change in voltage or current level which lasts for a short period of time.
PULSER A switching device used to transmit debounced (clock) pilﬁses. i into the next
PUSH The instruction mmemonic to load the two bytes from a register pair into
available locations on the stack. i} .
i i i i 80 microprocessor.
memory Refresh pointer register in the Z ‘
gAi\«EhechI:iaﬁcAceess I\}:Iemory, an addressing method where ‘the contents of any io;atmn
can be read from or written to independent of any other location. Contrast to Serial Access
i i W memory.
s with tape. Also the conventional reference to R/ ) ‘
REaAngv’li’IMaiI?I)e A simulation of any activity in a time scale commensurate with the time of
urrence of the real process, ‘ _ .
BE(;?I(;E?S;I To restore the memory contents by addressing, a requirement of dynamic R/W
emory ICs on a period of about 2 msec. ' . ‘
BEI:;IS’;E);% A set of parallel latches having 2 common clock dmput and forming an n bit
i i i ] TIOTY.
location; the storage locations in a microprocessor af’ mer ' ) ]
BESIZ):%gI%EC:DDRESSING A method of memory addressing gfvhlchtfldclis al t(:z{:i{smcom
i termine the particular lo )
t displacement to the current PC address to de. '
RE%Z??%E DpECODING A method of address decoding which does not use one or more
ignificant address bits. . .
REOIf(;}gAI'T;‘{XgISj}%n(IJODE A machine code routine which uses only relative ac.idressmig an.d
holds no absolute addresses and therefore is independent of the segment it occupies in
mMemory. . o |
RESET To restore conditions to their injtial Val.ues. ot
Return, the instruction mnemonic to terminate a su rou . '
ng]}; TI?VIHE{,“ The time required to complete the low-to-high transition of a pulse usually
form.
rad between the 10% and 90% levels of the wave ‘ ‘
BOr;\lfasEead Only Memory, nonvolatile static memory ICs programmed during manufacture;
t be programmed by the user. N '
BO?;:!}I?E A?} oieration that shifts the bits of a number one position to the left or right,
assing the MSB to the LSB or vice versa. ‘ . |
BOZ;J’I'INgE A self-contained portion of a program formm-g part of the ms‘un pregrcatgi o
R8-232 A serial communications Standard defining the signals of a 25-pin comne
bipolar voltage signal levels.
T cute a prograr.
g}}\;} Ré)asy\e?\/rite, tll':e type of volatile random access memory ICs. Also the processes that
fer data from or to memory, respectively. . .
SC;:%;(?;{PZ% A block of R/W memory set aside to hold temporary or intermediate
data. o “ . |
SERIAE The processing, transmission, or storage of data in timne sequential ﬂr:ie; device
SET The control input line or the corresponding signaéwhw‘h pi‘;ice(s} ItJ};S ;gtg:d% }?‘,SET
i i i t. Compare to .
the logic 1 state, sometimes referred to as Prese ar . ! ,
SHLInFT Aﬁ operation that shifts the bits of a number one position to the left or right withou
exchange between the MSB and LSB as in ROTA'I:E. MENT
SIGN BIT The MSB of a binary number. See TW('S COMPLE INT. 4 roceiver
SIMPLEX A one-way serial communications link between a transmitter an eiver .ne}(t
SP Stack Pointer, the 18-bit register in the processor that holds the address o
ailable location on the stack. ‘ . ' 0
SSIavSmall Scale Integration, used in referring to integrated circuits having fewer than
istors. -
STK?;?S (’;rhe region in B/W memory used by the microprocessor to store the return
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addresses of subroutines and data PUSH
first-out build-down Iist,
SUBROUTINE 4 self-contained portion of a

ed from the register pairs. The Stack is a last-in

and the addition

TRANSIENT A spurious indetermingte signal,

TRANSISTOR A solid state electronic device having three ¢
Emitter) capable of amphifying current.

TRUTH TABLE A table listing the output values of a
combinations of input values,

TWQ'S COMPLEMENT
binary numbers in which th
number and adding 1.

UART  Universal As

erminals (Base, Collector, and

circuit as a function of all possible

control logic signals.
VARIABLE A symbolically named quantity which may assume assigned values,
VECTORED INT Pt servicing in which the device passes
information to the processor s i
V/F Voftage-to-Frequenc
VOLATILE MEMORY Memory circuits which lose their

VLSI Very Large Scale Integration, used in referring to i
of 5000 transistors.

contents when power js removed.
ntegrated circuits having in excess

spiral windings of wire on square posts.

Z  The electrical symbol for impedance measured in ohms, th

eaccounterpart to de resistance,
Also the abbreviation for the Zero flag,

[
:
;
|
|

o index o

Beta current gain, 154
A Bidirectional, 44, 80, 95
Binary arithmetic, 50
Aoy Binary numbers, 7
SO s Binary weight, 147
e 1’?:? : Bipolar power supply, 159
A register, g
A(Cifiumulgmr ;%gizzer, ® g;tz;nching instructions, 57
Address Bus, 40, o
Analog-to-Digital, 146 g::zjgg:rging, 2
Absolute address, 57 Butter 15 155
Absolute branch, 68

decoding, 80 Built-in amplifier, 105
e o 15? Burglar alarm, 167
ﬁ?tuatm'ji» i?g ! Bus activity, 82

ir speed, ‘
Alphg current gain, 155 Bus, 43
Amplification, 151, 153
Amplifier design, 152
Analog data, 146 C
Analog properties, 150

Analog electronics, 150 CLEAR statement, 60

Analog signals, 9, 99 CMOS, 11
Answer mode, 104 Carry bit, 84
Argument, 59 Carry flag, 50
Assemble, 52 Control Bus, 43

Assembler language, 52
Astable, 25, 105, 140 Chip enable, 106
Asynchronous, 753 Chip select, 108
Asynchronous serial, 101, 138 Clear, 20
Augmented instructions, 56 Clack, 51
Automatic control, 19¢ Clock cycles, 58
Average, 117 Clock mput, 77 _
Averaging routine, 174 Coaxial cable, 103, 155
Collector, 151
Collector resistance, 152

Channel number, 18

B Color change, 168
Command word, 139
BASIC, 2 Common base, 155
, Common collector, 155
bop s g Common emitter, 155
gc}?i, 8’t22100 Common mode rejection, 159-160
aud rate,

Complement, 49

Baudot code, 100 »

Background program, 195 Compieme.ntar);, )

B 151 Computer interfacing,
ase,
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Conditional branch, 57
Control output pori, 94
Contro} signals, 17, 191
Control word, 94
Converter, 148

Counter, 22, 38
Coupling Capacitors, 155
Current amplifiers, 159
Current gain, 154
Current loop, 102

D

DAC, 105, 115, 16
C power supply, 128

DIL, 11

DIF, 5, 11

DI instruction, 154

DjNZ Instruction, 57
DMA, 193

DSP, 74

D-type latch, 19, 2

Data Bus, 43

Decima) Assembler, 53
Device Code, 40, 73
Device Select Pulse, 73, 74, 84
Dz‘gita!~to-Ana}og, 105
Damped harmonic motion, 172, 176
Data acquisition, 86

Data bits, 10]

Data Processing, 2

Data source, 75
Debounced, 34

Debounced pulser, 33
Decimal number, 5
Decoder, 17,73

Decoding, 16, 40

Dedicated instrument, 138
Dedicated microcomputer, 13§
Demodulator, 163
Demultipfexer, 17
Differential input, 159
Digital cireuit classes, 1112
Digital device, 87
Digital gates, 158
Digital input, 99
Digital microcomputers, 148

Digitai signals, §, 99
Direct instruction, 66
Direct, 55

Disable, 80

Disable interrupt, 58
Dynamic transducers, 150

E

Ef Instruction, 194
EXCLUSIVE OR, 18
End-of~Conversion flag, 148
Edge connector, 5

Elastie beam, 171179
Electrica] interference, 156
Electrical transducers, 130
Electronic amplifier, 159
Electronic noise, 159
Emitter, 151

Empirica] rules, 152

Enable, 18, 80

Enable interrupt, 38
Exchange Operations, 58
Experiment, 1

Exponentia] brocess, 180-16]
External memory, 51

F

FDZX.1, 28

FSK, 102, 103

Flags register, 193

Fan out, 33

Feedback resistors, 159
Fetch, 77

Flag bits, 63

Flag registers, 48
Foreground Program, 195
Frequency conversion, 104
Full duplex, 102

Grey code, 122
Gates, 13
Gating, 18, 38

¢
I

General purpose register, 47
Greenhouse temperature, 185

H

HALT, 194

HALT instruction, 58
HL register, 48, 53
Hooke'’s Law, 171-172
Half duplex, 102
Handshaking, 73, 193
Hardware, 1, 27
Hexadecimal, 7

High address bus, 44
High level, 4

Host computer, 138
Household machines, 185

I register, 196
I/0 Interface, 81

I/0 control pulse, 74
IC, 5

IN Istruction, 47, 73, 74
INT, 194
I0RQ, 45

Index register, 48, 56
Instruction register, 51
Interface Board, 28
Interrupt register, 48

I deal op amp, 158
Immediate, 55, 66
Indirect, 55, 66

Input, 58

Input port, 73, 75, 89
Instruction eyele, 51
Instruction set, 52
Integer power, 6
Integrated signals, 10
Interface, 45

Iaterface buffer, 5
Interfacing, 4

Internal memory register, 48
Interpreter, 3

Interrupt, 194

Interrupt acknowledge, 194
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Interrupt request line, 58, 195
Inverse video, 66

Inversion circle, 12

Inverters, 12

Inverting input, 158

Joystick, 111

Kevway, 5, 45
Kilobyte, 3

LED cathode, 92

LET command, 58

LS series, 11

Load instruction, 59
Latch, 19

Light sensitive, 167
Linear IC, 157

Logic operations, 61
Loudspeaker, 150

Low address bus, 44, 73

M

Mi, 77, 191

MR, 45

MREQ, 45

MW, 47

Morse code, 100
Machine cycle, 51
Machine language, 3, 61, 84
Mask, 194

Math operations, 34, 56
Maximum value, 176
Mechanical bounce, 83
Memory register, 48, 53
Microcomputer, 43
Microphone, 150
Microprocessor, 11, 47
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Mnemonics, 52, 86

Mode, 195

Modem, 103

Moedulator, 103
Monostable, 24, 82 111
Motor, 87

Motor speed, 115
Multi-channe] decoders, 74
Multi-Ievei, 195

Multiple emitters, 157

N

N and NN bytes, 55
NAND, 15

NMI, 194

NOR, 15, 138

NPN, 151

Negation, 15, 49
Negative numbers, 50
Noise, 102, 103, 151
Non-inverting input, 158

o

OR, 14

ouT instruction, 73, 4, 77
Ohm’s Law, 153, 156
Octal, 7

Opcede, 53

Operand, 55

Operating Systemn, 3
Operational amplifier, 108, 115, 157
Optical sensor, 115
Originate mode, 104
Oscilloscope, 108, 164

Out, 47, 58

Output port, 73, 76, 92
Output timing, 192

PCB, 5, 45
PEEK, 93
POKE, 63
PPI, 94

Parity bit, 101
Port Address, 40, 73
Program Counter, 51, 57
Paraﬁe]~serial, 100
Peakdo‘peak, 154
Periphera] device, 73
Permanent magnet motors, 107
Personal Ccomputer, 2, 4
Phase inversion, 155
Phototransistor, 115
Piggy~backed, 81
Pin out, 12
Poll, 148, 198
Position detection, 111
Positive edge, 21
Pasitive logic, 13
Positive numbers, 50
Potentiometers, i1
Prefix, 52
Preset, 20
Programmabie, 94
Programming, 9
Pulse stretching, 82

R

RAM, 3

RAMCS, 191

RC charging, 160
RD, 45

REM statement, 59
ROM, 3

ROMCS, 191

RS232, 102, 103
Refresh register, 48
Radio frequency, 29
Random data, 189
Real time, 130
Receiver, 138
Register, 18, 48
Register transfer, 53
Relative branch, 70
Relative decoding, 80
Relative displacement, 56
Relative jump, 57
Relay, 87
Relocatable code, 163
Relocated, 57
Request, 192

e

Reset, 51, 140, 191
Resolution, 147

Restart instruction, 57
Rising edge detection, 117
Robot arms, 128
Robotics, 196

Rotate operations, 56, 64

SAVE, 80
Sign flag, 48
Sinclair printer, 81
Spectrum, 4
Stack Pointer, 51
Scientific instrument, 2
Sensors, 150
Serial data, 10}
Serial timing, 104
Serial transmission, 100
Set limits, 186-187
Shaft encoding, 122
Shift registers, 100
Signal conditioning, 149
Simplex, 101
Single-line interrupt, 195
Software, 1
Solderless breadboard, 27
Solid state relay, 188
Speed, 135
Stack, 52
Stack operations, 56
Start bit, 101
Static transducers, 150
Stepper motor control, 107, 126
Stepper motor supply, 110
Stepper motor program, 109-110
Stop bits, 102
Strain gage, 159, 171
Successive approximation, 146
Switches, 34
Syachronous, 138

T
T/8 Interface circuit, 78
TS 1008, 4
T8 1500, 4

Index

TS 2088, 4

TTL, 11

Tachometer, 178
Teletypewriter, 100
Temperature control, 185
Temperature drift, 155
Temperature recording, 181
Termperature sensor, 181
‘Temperature set [imits, 190
Thermal runaway, 153
Thermocouples, 159
Three-state buffers, 26, 75, 89
Three-state octal latch, 92
Time constant, 160-16]
Time delay, 72, 163
Timers, 24, 111

Timing diagram, 12, 77
Titration, 168

Tools, 27

Transducers, 150

Transfer operations, 63
Transistor amplifier, 151
Transistor current, 152
Transistor switch, 110, 155
Transistors, 151
Transmitter, 138

Truth table, 12, 14, 30
Twisted pair, 103

Two's complement, 50, 56

UART, 106

USART, 138

USR function, 58, 84
Unconditional branch, 57
Unity gain amplifier, 159

VLS, 94

Vectored interrupts, 195
Vectoring, 195

Voltage follower, 117, 159
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WAIT, 193

WARM, 3

WR, 45

Wheatstone bridge, 141
Weather vane, 192
What?, 44

When and how?, 44
Where?, 44, 74

Z
780, 45
Z80 control lines, 191
ZX81, 4
Zero flag, 50
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