This book tells you how to use the Sinclair ZX80
microcomputer. Whether you have one already or
areintending to buy one, you will find here a clear
downto earth explanationof howto useand howto
get the bést out of the ZX80.

Robin Norman takes the mystery out of bits and
bytes, binary and hexadecimal, but best of all, he
tells you exactly whatto do to get your ZX 80
working for you. And when you have gotto know
the workings of the machine youcantry some

of the specially writien programs E:m<m:m§m
anywhere else).

ISBNO 408 011017

CONF o N . _T. A

Robin Norman

o
£ mgv

Learning

BASIC with your
Sinclair ZX80

Robin Norman

Newnes Technical Books

Newnes Technical Books

is an imprint of the Butterworth Group

which has principal offices in

London, Sydney, Tarento, Wellington, Durban and Boston

First published 1981

© Buiterworth & Co. (Publishers) Lid, 1981

All rights reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and
recording, without the written permission of the copyright holder,
application for which should be addressed to the Publishers, Such
written permission must also be obtained befare any part of this
publication is stored in a retrieval system of any nature.

This book is sold subject to the Standard Conditions of Sale of Net
Books and may not be re-sold in the UK below the net price given by
the Publishers in their current price list.

British Library Cataloguing in Publication Data

Norman, Robin
Learning BASIC with your ZX80.
1. Sinclair ZX80 (Computers) — Programming
2. Basic (Computer program language}
L Title
001.6424 QAT76.8.562/

ISBN 0-408-01101-7

Typeset by Tunbridge Wells Typesetting Services
Printed in England by Butler & Tanner Ltd., Frome and London

_u_imnm

S0 much has been written in the last two years about the wonders of
the silicon chip, that I hesitate to join the chorus! ! learnt to write
BASIC programs in the late 1960s, using a noisy teletype terminal
connected via a GPO line to a large central computer which | never
saw. Now, a microcomputer of comparable power is quiet, sits on a
small desk and can be bought for the equivalent of a few days rental
of the old terminal. After a holiday from computers, mainly spent
teaching in a Middle School, I suddenly find that | can afford my
own microcomputer, and | am relieved to find that the BASIC
programming language is very fittle changed. | am back in business!

S0 what is the point of this book? Well it just happened that
Newnes and | both came to the conclusion that microcomputers
like the Sinclair ZX80 were very suitable for beginners to
computing, but that the manuals supplied with them seemed to be
intended for more advanced workers. In writing this book [have
made these three assumptions about the reader (in each one for
‘he’ read ‘she’ if you prefer!)

I He is a newcomer to computer programming (naturally,
depending on experience, he can skip early sections of the
book).

2 He has one particular microcomputer, the Sinclair ZX80,
switched on, in front of him.

3 He wants to learn all the instructions available in ZX80 BASIC,
using a structured course with a steadily increasing tempo.

Having worked through the book (‘read” is not the right word), the
reader should be able to make full use of his ZX80 and, later on,
transfer easily to more sophisticated microcomputers.

[can’tavoid a few acknowledgements. To Betty Clare, who typed
tricky manuscripts calmly and efficiently. To Peter Chapman,

whose ideas for programs were often novel and usually translatable
into BASKC, To my family, who learnt the hard way that computing
can be addictive, combining the joys of puzzle solving with
delusions of power. And finally to Clive Sinclair who lent one of his
little machines. Having been reared on his programmable
calculators, | was expecting something gocd and | was not
disappointed. ZX80 has its limitations, that's economics for you, but
it is very good value and a pleasant way to start computing. So, |
hope you find this book helpful. Happy programming to you alll
R.N.

Contents

10.
11.
12.
13.
14,
15.
16.
17.
18.
19.
20,
21
22.
23.
24.
25,

R A S

Whatis a computer?
Talking to computers
Programmingin BASIC

Let's get it switched on!

We want style in our programs!
Will it do sums?

Useful odds and ends

The orderisimportant

Over and over and over again
Flowcharts

Data please

First edition

A program worth saving?
Overandover. . . tentimes exactly
Bigfleas have little fleas . . .
The ZX80 gets friendly

Natural breaks

Amatier of chance

it draws pictures as well?
Playing with strings

Line ‘'emup!

Justoff to the shops — back soon
[t's ever so logical

Thanks forthe memory
Debugging your programs

Appendix 1. ZX80 BASIC in 4K ROM

Appendix 2. Glossary of terms

Appendix 3. Programs for the ZX80

Appendix 4. Sample answers to exercises
Appendix 5. The Sinclair ZX80 16K RAM pack
Appendix 6. The Sinciair ZX80 8K BASIC ROM
Index

100
105
108
138
148
150
151

List of Programs

000 NG U e 1

Graph plotter

Klingon missile

Fox and hounds

Fruit machine with optional nudge
Tablestest

Throwing a single dice

Throwing a pair of dice

Pontoon

Hog

Submarine hunt

Bullsand cows

Inthe caves

Multiples

Number base changing — base 2/10

108
110
112
114
116
118
120
122
124
126
128
130
134
135

\—

What is a Computer?

Not long ago | put this question to a class of 12-year-old children,
and got quite a variety of answers. The replies nearest to the truth
were, ‘It's a machine that works for you’ and, ‘It does things for
you.” Yes, friends, the computer is another fabour saving tool, like
an electric sewing machine or an automatic lathe. If you feed steel
rods into the lathe, you can end up with lots of wood screws — very
useful products. If you feed words and numbers into the computer,
you can also get a useful product in the form of more words and
numbers.

Can these machines work on their own? Well, yes and no.
Imagine what would happen if you took a lathe straight from the
factory and fed in steel rods. Probably all you would get would be a
lot of pretty but useless steel spirals. Somebody has to fix all the
settings on the lathe so that it can make the tapered shape, cut the
screw thread and mill out the slot in the head to make a finished
screw. In just the same way, someone has to tell the computer what
data (words and numbers) to expect, what to do with this data, and
what results to print. The instructions for a computer are what we
call a program, and programs are what this book is alf about!

It's the custom to spell computer programs with one ‘'m’ since it
helps to distinguish them from all the other meanings of the word
‘programme’. You've just joined the ranks of the computer
programmers and you must learn some new words, as well as some
new meanings for old words, 'l try to keep these to a minirmum,
and I'll help you by listing them all in a glossary at the end of this
book,

Here are two more jargon words that you must have come across.
Hardware means all the physical parts of the computer with its bits
and pieces — your Sinclair ZX80, the TV screen and the cassette
recorder,

Software means all the programs and instruction bocks needed to
make the computer work — your ZX80 operating manual, this
book, the permanent programs put into the ZX80 by its designers,
and the programs that you write.

Over the years, electronic ingenuity has been rapidly reducing
the size and the cost of computer hardware, and the little ZX80 was
the first to break the £100 barrier. Software costs have beenfalling at
a much slower rate — if you want to know why, see how long it
lakes you to write even a fairly simple program. All the same, mass
marketing should mean cheaper good software in the future.

2

Talking to Computers

With our human complement of ten fingers, we have got used to
decimal numbers made up of the ten digits from 0to 9. Computers,
on the other hand, work with binary numbers, A binary digit, bit for
short, can only have the values 0 or 1, and the computer is just
about bright enough to tell the difference between these twol!

One can write programs in binary numbers (in the early days of
computers this was the only way), but humans find binary numbers
clumsy to handle and hard to recognise. A better way isto use a low
level language, and to write programs in machine code, a series of
letters and decimal numbers. Machine code programs are fast to
rizn, and are economical in the use of computer memory, but they
are no way for beginners to learn programming. Most people
converse with computers in a high Jevel language, which uses
decimal numbers and sets of recognisable English words. Some
common high level languages are:

FORTRAN {FORmula TRANslation, mainly for science and
engineering}

COBOL (COmmercial Business Oriented Language)

BASIC (Beginners All-purpose Symbotic Instruction Code)

The computer cannot understand these high level languages on its
own, and so programs have to be written to transiate them via
machine code into binary numbers.

Computer Memories
The memories in a computer consist of a large number of ‘boxes’ or
‘pigeon-holes’, each containing an 8-bit binary number (calied a

byte}. The size of computer memories is usually specified in terms of

3

'K’, where 1K is a memory with a capacity of 1024 bytes. There are
two types of memory in microcomputers such as the ZX80.

Read only memory {ROM} contains the software needed to run the
computer and to translate the BASIC instructions into binary code.
ROM is permanent, and so is not lost when the computer is
switched off, The ZX80 uses BASIC in 4K of ROM.

Random access memory (RAM), also known as user memory,
contains all the data and programs which you put in. It is not
permanent, and if you switch off for a fraction of a second, the RAM
contents are lost. Your ZX80 has 1K of RAM available, although a
further 16K is available in & plug-in module (see Appendix 5}.

Input and Output

We need to be able to put data and instructions into the computer
memory and the ZX80 provides us with a reduced size version of
the standard typewriter keyboard for this purpose. We also have to
provide the means for the ZX80 to show its results, and to keep a
check on our input — a standard commercial TV set is used for this.
We've seen that the RAM contents are lost when the ZX80 is
switched off — this may be a precious program which has taken
hours to write! We therefore need back-up storage in which to keep
our programs and data permanently. A sure way is to write them
into a notebook or file, but this stili means a lot of tedious typing
when we want to use them again. The ZX80 system uses a standard
domestic tape recorder, and programs can be saved on a casselte,
kept indefinitely and loaded back into the ZX80 when required.

Looking Into the Future

What about the long term developments - the crystal ball stuff?
Well, | suppose it has all been said before, but here is a list of the
features | should like on my future personal computer — maybe
some of them will happen:

(1) Some agreement on standards, so that computers can
communicate with each other more easily.

(2) Communication with the computer by voice — both for input
and output.

(3) Cheap printed output — a domestic electric typewriter
connected to the computer — word processing in the home.

(4) Cheap unlimited permanent memory for back-up storage.

(5) High definition output in colour, comparabie with TV
standards.

{6) A large range of cheap software — programs for business,
home, learning and leisure - in simple plug-in form.

{7) Connection to large central computers, prabably via the TV
network, to give access to virtually unlimited information on’
any chosen subject,

Programming in BASIC

BASIC is one of the most widely used high level languages,
especially for the present generation of microcompuiers. Many
different versions of BASIC exist, in rather the same way as there are
many different dialects of English. However, do not lose heart! All
versions of BASIC are easily recognisable as coming from the same
original source (BASIC was developed at Dartmouth College, New
Hampshire, USA), and when you have learnt one form of BASIC
you can quickly transfer to another form on another computer.
Sinclair ZX80 BASIC in 4K ROM is one of the simpler versions, and
therefore it is ideal for beginners. On the other hand, it does have
valuable features which are not found in many other BASIC
dialects.

The First Computer Program?

fet's take our first look at programming with a light-hearted
example — later on we'll write a real BASIC program for a
mathematical model of it. The Sorcerer’s Apprentice was originally
written by Goethe, and most people know the musical version by
Dukas. When 1 first came across it, Mickey Mouse was the
apprentice in Wait Disney’s Fantasia. The sorcerer goes out for the
morning, leaving Mickey with the boring job of filling a great water
tank with water from the well. Mickey is an enterprising lad, and he
decides to program one of the kitchen brooms to do the job for him,
while he has a crafty snooze.

Now, in writing a computer program, it's very important to get
the instructions in the right order. With this in mind, every
instruction is given a number, so that Mickey's first atternpt at a
program could have been like this:

6

1 Pick up bucket and go to well
2 Fill bucket with water

3 Carry bucket carefully to water tank (no spilling please)
4 Empty bucket into water tank

Clever stuff so far, but only one single bucketful of water has been -

shifted. Mickey could have repeated the same instructions over and
and over again, numberingthem 5,6, 7, 8and 9, 10, 11, 12 and so
on. But no! He has read Chapter 9in the spell book, and all he hasto
do is to add a fifth instruction:

5 GOTO1

and now he has made a program foop. The broom follows the
program exactly, and goes happily backwards and forwards filling
and emptying buckets, while Mickey dozes off. . . .

* * * * *

until he wakes with a start some time later to find his feet
sloshing about in water. You've guessed it! He forgot to tell the
broom when to stop! Panic stations — he chops the broom into
sixteen bits, but each of these gets up, picks up a bucket, and carries
on with the good work. Luckily the sorcerer arrives home in the
nick of time. Being a skilled programmer of brooms, he knows that
every loop must include a ‘get out’ test, or else it will go on for ever.
We call this vital step a conditional jump, because it always contains
the magic word ‘IF’.
Now we add an IF statement, and renumber a little, and the final
program looks like this:

—

Fick up bucket and go to well

2 Fill bucket with water

3 Carry bucket carefully to water tank

4 Empty bucket into water tank

5 IF water tank is not full THEN GO TO 1
6 Report 'Tank full’

Stop

~1

Note that the IF statement must be inside the loop, so that every
time it goes round the loop, the broom has to test whether the tank
is full, and take action accordingly.

Childish stuff | know, but at least it raised four points which are

going to be very important when we come ta write real programs
for the ZX80.

(17 A BASIC computer program is made up of a series of
instructions.

(2) The instructions are all numbered so that the computer can
carry them out in the order it is told to.

{3) You can make the computer do part of a program overand over
again by using a GO TO instruction. We call this a foop.

(4) A loop must contain a conditional jump, which will stop the
computer or send it out of the loop when the condition is
fulfilied. The magic word is ‘1¥'!

4

Let’s Get It Switched On!

Enough of theory! You'll need to read most of the rest of this book
beside your switched-on Sinclair ZX80.

Connecting up the Hardware

To get going we need to connect up just three pieces of hardware.

{1) The ZX80 microcomputer (of course)
{2) The power supply for the ZX80

Sinclair specify a supply of 9 V d.c. at 600 mA unregulated. The
9V output must terminate in a 3.5 mm jack plug, the tip of which
must be positive. Sinclair's own unitis in a convenient box with pins
which plug directly into a standard 13 A socket. It is worth making
the point that the usual calculator power units will not provide
enough amps, and must not be used.
(3) Any domestic UHF television set

Ablack and white set is preferable. The TV set enables you to read
and check your pragrams as you type them in, and it is the means by
which the ZX80 displays its output.

Connect up the UHF aerial socket of your TV set to the large
central socket in the back of the ZX80 using the video cable
supplied by Sinclair. Switch on the TV, let it warm up, tune to an
unused UHF channel, and turn the sound right down,

Connect up your ZX80 to the power supply by plugging the
3.5 mm jack plug into the left hand one of the three sockets (it's
farthest in from the edge) at the back of the ZX80 and switch on the
power supply.

Take a deep breath — nothing has happened! You have to tune
the TV set to the ZX80 frequency first. Some sets are tuned by

9

turning the push button on the channel selector, while others have
a little door which opens to reveal a set of tuning knobs, When you
have got the tuning right (it's about channel 36}, the screen
suddenly clears, and you see a little black square with a white 'K’ in
it at the bottom left of the screen — this is called the cursor. The
cursor is there to show you where your next typed letter will
appear, and as you type out your program lines, the cursor will
move steadily ahead of your typing.

I know you are desperate to get started, but first we need to have a
quick look at the ZX80 keyboard.

The ZX80 Keyboard

There are five different sets of characters obtainable from the
keyboard, plus a few odds and ends.

(1) The set of numbers

The numbers 110 9 and 0 are obtainable at any time, regardless of
the state of the cursor, by pressing the correct keys along the top of
the keyboard. You will have to be very careful not to mix up the
number 1 with the letter 1, although the difference is fairly obvious
on the screen, More subtle is the difference between the letter O (a
square onthe screen) and the number 0 (a hexagon onthe screen}. |
am following the convention in the Sinclair ZX80 manual of printing
the number as 0, partly for clarity, and to agree with other computer
manuals,

(2) The set of tokens’

These are the light yellow words and symbols above the number
line. They are obtained by holding down SHIFT and pressing the
appropriate number key at the same time. Their use will be
explained later,

(3) The set of keywords

These keywords are printed in white above most of the letter
keys, and are one of the great joys of the ZX80 system. Suppose you
want the keyword PRINT. Well, the cursor must be reading Kl for
keyword if a keyword is needed next — the ZX80 takes care of that.
So, if you press the key ‘O" which has the keyword PRINT above it,
you will automatically type the whole word ‘PRINT' an the screen,
neatly spaced, and all with just one stroke of the key. At the same
time the cursor will change from [K to I (for letter}, since ZX80
BASIC cails for keywords one at a time. It will change back to [K]
whenever another keyword is required. Quite a few of the
keywords are placed above their initial letters, which helps you to
find them. The use of all the keywords will be explained as they are
needed.

10

(4} The set of letters

The letters A to Z (and also full stop) are obtained by pressing the
appropriate keys whenever the cursor shows [L] — the ZX80 system
will make sure that this happens at the right time. Only capital
letters are available in ZX80 BASIC.
(5] The set of upper case symhols

These are a mixture of punctueation marks, maths symbols,
graphics blocks, and so on, and they are shown at the top right of
each letter key. They are obtainad by holding down the SHIFT and
pressing the appropriate letter key at the same time, and they are
not affected by the state of the cursor.
6y Remaining odds and ends

SHIFT is at the bottom left; its use is just like that of the shift kev on
a typewriter. SPACE at the bottom right corresponds to the space
har of a typewriter. NEWLINE, EDIT, and BREAK will be explained
in due course.

Clearing Out Old Programs

it is necessary to clear out any existing programs in the ZX80
memaory before vou type a new one. Alright, you have only just
switched on and there should be nothing there, but let's practise it
anyway. Pressthe ‘(' key, remembering that the cursor [K] is calling
for a keyword.

The word NEW has appeared on the screen, and the cursor has
changed to (L], NEW is BASIC shorthand for ‘clear out any old
programs and variables and get ready for a new program’. It is ‘on
the screen’, but now it must be passed to the computer so thatitcan
obey the instruction. Thisis done by pressing NEWLINE on the right
of the keyboard - do it now. NEW disappears (the computer has
obeyed that instruction) and the cursor changes to [K] ready for
another keyword. The ZX80 is cleared and ready!

Commands and Statements

We just used the instructions NEW and NEWLINE, and these are
called commands. Commands do not form part of a program — they
are separate instructions to the computer from outside the
program, though they generally have some effect on the program.
Some examples of commands are:

NEW LOAD SAVE

We are also about to meet astatement, Statements are included in

11

a numbered program line, and form part of the program. Some
examples are:

FOR TO NEXT iF

Some instructions can be used either as commands or statements,
for example:

PRINT GO TO CLS

Your First Program

‘And not a moment too soon’, | hear someone say! We learnt that a
BASIC program consists of lines of instructions, each line starting
with a number. In ZX80 BASIC you must limit yourself to one
instruction per line. Let's start by writing a single line program.

Your cursor is requesting a keyword, but first we must type in a
line number. Type ‘1¢’, and notice how the cursor jumps ahead of
your typing — it always shows where the next typed character will
appear. The keyword we want is PRINT, short for the BASIC
instruction ‘print any characters which follow on this line and are
contained within quotation marks’. Which key are you going to
press for PRINT? Well done, ‘O is correct, you're getting the idea!
Do it now, and vou have this on the screen:

169 PRINT [

the [L] cursor showing that letters or upper case characters are to be
typed in now. Type a quotation mark (SHIFT Y} and you wilt see:

1¢ PRINT 5

Why did the [S] appear? This is because ZX80 BASIC makes you type
lines which have correct syntax. Most other computers will let you
type a single quotation mark by mistake, and you won't discover it
until you try to run the program. The [§] on your screen now is
saying, ‘V've noticed your first quotation mark, and | won't let you
enter this line until you have typed a second one to go withit’. Try it
— press NEWLINE and nothing happens!
Now finish ofl your line, typing very carefully to give:

1¢ PRINT “THE FIRST RULE IN ZX88 BASIC™ [L]

Note how the (S disappeared when the second quotation mark
went in. This means that the syntax is good and the line is suitable to
be entered — do it now by pressing NEWLINE. The line
immediately vanishes from the bottom of the screen, to be replaced
by [, ready for the next line of the program. The first line reappears

12

at the top of the screen — the top three-quarters of screen is
reserved for displaying all the lines of the program up to the one you
are currently typing (or as much of it as it can fit in). On the left of
your line is the current line pointer &, which marks the last line you
have typed in. Don’t worry about this for the present, we’ll be
meeting it again in Chapter 12.

No more program lines for the moment - instead try running the
:program as it stands. Press keyword RUN and wait ., . Hmmm!
RUN [L] certainly appeared on the screen, but little else seems to
happen. What did we forget to do? Oh yes, enter the command
RUN by typing NEWLINE. Do it now, and then shout ‘Eurekalit’.
ZX80 did what it was told! It printed all the words, tetters, numbers
and spaces, but left out the PRINT, quotation marks and cursor —
after all these were only there to tell it what to do. At the bottom
right of the screen is the error code #/10, which tells you that the
program has run without any errors, finishing at line 10.

What the program has just done is to make the ZX80 print a /iteral
string - astring of characters of any kind which is printed literally as
it occurs in the program line. Want to do it again? Right — press any
key to put the ZX80 into command mode again, and to bring back
the i, and then press RUN and then NEWLINE again. Repeat until
you've had enough, and then turn to Chapter 5 to add more to the
program.

At the end of this and every chapter from now on, I'll give a short
summary of any new points learned in the chaptes.

We Learnt These in Chapter 4

Commands

NEW to clear out old programs and variables.
RUN to make the ZX80 run the program and carry out its
instructions.

Statements

PRINT to make the ZX80 print a literal string on the screen.

Anvthing else

Connecting up hardware,
The ZX80 keyboard.

13

What the cursor does.

Numbering your program lines. . ‘
Literal strings — collections of any characters which are printed

literally as they occur in the program line.
Quotation marks which are needed at the beginning andend ofa

literal string.

14

5

We Want Style in
Our Programs!

A Second Line for Your Program

Let’s finish off the first program and make it look as neat as possible.
Eirzst of all type in this line very carefully, letter for letter.

20 PRINT “EVERY LINE MUST HAVE A NUMBERR” [[]

but don't enter it yet. Oh-oh, two Rs in number, we’'ll have to
correct it. No rubber needed, simply press RUBOUT twice (it's
SHIFT @) and the cursor moves backwards and rubs out the last two
characters. Now you have to replace the missing quotation mark,
and enter the new line by typing NEWLINE. Run the program
exactly as you did before, and all being welt you have on the screen:

THE FIRST RULE IN ZX80 BASIC
EVERY LINE MUST HAVE A NUMBER

So far I've been carefully printing in the cursor whenever it
occurred in a program line. Now I'm going to assume that you've
got used to the cursor, and will not bother ta print it unless there is
a special reason.

Tidying Up
Your program will give a neater result if we insert a space between
the two lines of output. Try this — type:

15 PRINT

and then enter it by pressing NEWLINE. What on earth are we trying
to do? PRINT what? Well, run the program as usual and see what
happens. . . . Did it work? It did! When the ZX80 comes to a PRINT

15

statement it moves to the next line on the screen and prints whatitis
told to. In line 15 it was told to print nothing, and nothing was what
it printed!

Finally, it would be nice to write a little remark at the beginning of
the program to say what it is all about. Type this:

3 REM + + + MY FIRST ZX80 BASIC PROGRAM + + +

and enter it with a NEWLINE. Why ali the + + 4+ + + + 7 Showing
off, that's all. The vital part of line 5 is the statement REM, which is
saying to the ZX80, ‘anything on this line is a remark by the
programmer and you must ignore it". Care to check up? Run the
program as usual, the result should be just the same.

Our first program is now complete. Many versions of BASIC
require an END statement at the end of their programs, but ZX80
says ‘no need’.

Numbering and Listing

With most computers you have to ask for a list of all the fines in your
program. ZX80 gives you one automatically as soon as you go into
command mode. I'm sure you have been noticing everything that
has been going on in the top part of the screen while we have been
typing in the program. The ZX80 automatically sorted the lines into
the correct order, although we typed them in the order: 16,20,15,5.

Now, why have we numbered our first two lines 19 and 287 well
done, you've got it! ZX80 does not care what the line numbers
actually are, all it is interested in is the order. So we usually make
jurps of ten between line numbers, to make it easier to insert extra
lines later on. ZX80 offers a choice of line numbers from 1 10 9999,
so there’s no shortage.

Getting Rid of Whole Lines from a Program

Suppose we want to delete a whole line from the program — what
can we do? RUBOUT will not work, not once you have entered the
line into the program with NEWLINE. All you need to do is this.
Type the number of the line and then NEWLINE. The ZX80 wipes
out the old line completely and replaces it with the empty line. In
the same way you can change a line by typing the fine number, then
the new version of the line as usual, and finally entering it with
NEWLINE. You can change a line like this as often as you like, ZX80
will always erase the old line and replace it with the new.

Now far a couple of exercises to practise what you have learnt in
the last two chapters.

16

Lxercise 5.1

Getinto command mode and then delete lines 5, 15 and 20 of your
present program. Check that the lines have really gone, by running
the program, and then change the remaining line to read:

THREE LINES GONE, ONE LEFT

Exercise 5.2

G_Qm% the rest of your program with one single keyword (plus
NEWLINE of course). If you have forgotten which keyword, look
back to the end of Chapter 4.

Now write a new program to make the ZX80 print this:

SINCLAIR ZX80 MICROCOMPUTER
MADE BY S5CIENCE OF CAMBRIDGE

Put a space between the two lines, and two spaces before ‘MADE'.
See what you can .go with that one, and just to check that it can be
done, try making jumps of a thousand between the fine numbers.

We Learnt These in Chapter 5

Statements

PRINT to produce a line space.

REM for remarks — ignored by the ZX80 when it runs the
program,

Anything else

mCmOCH to get rid of mistakes, one character at a time, while
typing in a line of program.

>Eo:m_m:n listing of the program while you are in command
mode.

rmws:m gaps in line numbering, so that extra lines can be inserted
ater on.

Delete a whole line from the program after entering i i
. g it, by typin
the line number and then NEWLINE. yyeme

Change any entered line by typing its number, then the new
version, then NEWLINE,

17

will It do Sums?

First, let us be honest and say that the answer is a qualified "YES for

the basic ZX80.
The trouble with the simple ZX80 is that it uses an INTEGER BASHC

which only recognises integers (whole :gBU.m@. If an answer
should contain a decimal fraction part, this is simply chopped off
and iost. For example: o

Expected answer ZX80 answer

4 4
7.2 7
12.5 12
15.99 15
0.999 0

Note that there is no question of rounding off, the decimal part,
however large, simply disappears.

Mathematical operators

Back to school now, to remind ourselves om the four maths
operators. You'll easily find two of them on the ZX80 keyboard:

+ {pius) at SHIFT K
— {minus) at SHIFT

You will look in vain for x (times) because the ZX30, fike most
computers, uses * {at SHIFT P) for this. Similarly, for + a..WSQmo_ vﬁ
the ZX80 uses / (at SHIFT V); remember how we use this to write
fractions like 2/3, which are really division sums. .
There is one more useful operator available, for calculating
powers of numbers, and this is ** (SHIFT H). For example:

18

72 {or 7x7) would be written as 7%*2
24(or 2x2x2x2) as 2*%%4 and sc on.

We now have all the tools — let us see how to use them.

The LET Statement

BASIC uses a most powerful statement, which allows a computer to
do a calculation, put the answer in a memory box, and label it so
that it can be used later in a program.

Clear your ZX80 by typing NEW, and then type in this line, using
the keyword LET,

10 LET A=123%45

{So far, | have been reminding you to type NEWLINE after each
command and program line, but new you are on your own!)
What our line 10 is saying is:

‘Work outthe answer to 123 x 45, and put it in a memory box and
fabel it A’

Now RUN the program — the code §/10 at the bottom of the
screen tells you that it ran successfully, stopping at line 10, There's
precious little in the way of output though — WHY NOT?

Pause for deep thought . . .

What is the statement that makes the ZX80 print things on the
screen? Yes, PRINT was the one. Type:

20 PRINT A

and RUN it again. Eureka! It worked — the answer 5535 came up on
the screen.

Exercise 6.1
Why did we not type:
20 PRINT A"

The answer is at the end of the book, or to save time, try doing it.
Since 5535 is rather an anonymous number, let's give it a name
tag:

15 PRINT “A="
RUN, and check that the output is

A=
5535

19

Integer Variables

Our memory box now contains the value 5535 and has a label A.
More correctly we say that the integer variable A has the value of

5535. .

Very many different integer variables are possible in ZX80 m.\ym_m,
limited only by the memory available. You must follow two simple
rules in naming them:

(1) Names must start with a letter. .
(2) They may contain letters and numbers, but nothing else (no
spaces, punctuation, etc.)

So, here are a few simple examples.

AtoZ
AAt0 ZZ
Al 10 A9
70 to 720

We usually choose names to act as a mnemonic for the contents {T
for total, A for area, and so on}.

Using LET with integer variables

As we have seen, this very important statement in BASIC takes the
form:

LET integer variable name=. . .

Now let’s see what we can put on the right of Mrm. = sign. (Let's start
calling integers ‘numbers’ from now on — not quite correct but a bit
more homely.)

(1} A number
e.g. LETB=0
LET C=99
(2) An expression using numbers
We have already used LET A=123745

Similarly, LET D =156/13
LET E=67+89
LET F=98-76
LET G=3**4

You can make these expressions as complicated as you like.

20

(3) An expression using other variables, with or without numbers.
eg LETH=2*G
LET I=F+2
LET j=A+B

Here we need to be very careful, for it is no use telling the ZX80

that H=2*G, unless you have already said what G is. You must
define your variables before you use them, even if they are @.

{4} An expression using the same variable as the one on the left of
the = sign,

eg LETK=K+10

Algebra was never like this! Remember we are not using the =
sign in quite the usual way. We are saying to the ZX80, ‘take the
contents of memory box K, add 1@ to it, and put this new value
back in box K in place of the original contents'.

Note, once again K must have been defined previously in the
program.

There has been a lot to think about in this chapter, now let's try

some practical work. Try writing some short programs to define
variables, using all the above methods, and to print the values of the
variables. Especially, try a program like this:

10 LETK=9

20 PRINT “ORIGINAL K="’
36 PRINTK

40 LET K=K+ 780

5 PRINT “FINALK=""

60 PRINT K

Exercise 6.2, Exchange Rates
The bank offers you 69 Beigian Francs for £1. Write a program to

calculate and print out the number of Francs you get for £275, and
similarly how many pounds you must pay in to get 5382 Belgian

Francs.
We Learnt These in Chapter 6
Statements

LET to define a variable
PRINT to print the value of a variable

21

Anvthing Else

ZX80 uses integer BASIC {no fractions and no decimals).
Four maths operators, +, -, * and /.

** for powers of numbers.

Ruies for naming variables.

22

4

Useful Odds and Ends

Punctuation

That exchange rate program in Chapter 6 — rather a messy print-
out, wasn't it How much neater if we could print strings and
variables on the same line when we want to. No problem! The
program needs a litle punctuation, that's all. Try this new version of
the first part of Exercise 6.2:

10 LET L=275
20 LET B=69*L
39 PRINT B;” BELGIAN FRANCS FOR £75L

and RUN it. That fooks a lot neater. The semi-colons are saying
‘don’t move to a new line, I wantto print the next item right after the
last’. Notice that we needed a space between the value of B and
‘BELGIAN', so we had to include that space in the string,

Exercise 7.1, Miles per Callon

Your car manages to cover 258 miles after being filled with § gallons
of petrol. Write a program to calculate the petrol mileage and print
it in the form:

PETROL MILEAGE = x M.P.G.

As a matter of interest, check your answer with a hand calculator.

Sometimes we want to leave a gap between two PRINT items. We
¢an use a string of spaces as above, but quicker and maore
economical in precious memory is the comma. ZX80 BASIC divides
each line on the screen into four equal zones, and a commain your
program says, ‘move to the next zone before PRINTing the next

23

item’. You'll see how it works in this program: We Learnt These in Chapter 7
1 PRINT “FEE", "FI", “"FO”, “FUM"”

2% PRINT wcmﬂc;w:o: ¢ m.:o_ ;) to control where items are printed on a line
30 PRINT 1 SMELL THE BLOOD OF AN Error Codes to indicate whether or not your program contains
40 PRINT,, “ENGLISHMAN' errors which prevent it from running. .

Notice how we used ,, in line 4@ to skip on two PRINT zones.

Now we know how to PRINT items immediately after one
another, or with spaces between, or on successive lines, and our
program print-outs should be looking much prettier. Try your hand
at this:

Exercise 7.2. Family Transport

Write a program to print a table of the way your family gets around,

like this:
Name Colour Make Type
Dad White Austin Car
and so on.

Error Codes

You must have been wondering about the numbers which appear
at the bottom left of the screen after RUNning a program. They are
error codes, and are listed on page 99 of the ZX80 Manual. ‘Error’ is
not quite the right word, because one of the codes tells you that
your program has finished running without apparent error. For
instance, the ‘FEE, FI, FO, FUM’ program will have ended with /40,
showing that the program has RUN and finished at line 40.
Try this program:

1060 PRINT “"LINE BEFORE ERROR”’
200 LET A=99%999
300 PRINT ""LINE AFTER ERROR”

The ZX80 accepts it quite happily, but will it RUN? No — the error
code 6/20% has come up, and the ZX80 Manual will tell you that this
means an arithmetic overflow at line 20@ (we tried to put a number
greater than 32767 into A). Atline 200, the program stops running,
and no instructions on or after this line are carried out.

More on error codes later.

24 25

The Order is Important

We saw in Chapter 7 that an answer greater than 32767 stops a
program with an error code. Given a no:._@.mnmﬂmm expression with
several operators and numbers, the ZX80 {like a human _om_:.mv has
to do one step of the calculation at a time, and at no stage in the
calculation must the answer go over 32767 {or under —32767).

You will remember how important it is in maths No..go m_mmwwmﬂ
operations in the right order. It is just the same for the ZX80, which
has to follow these standard rules of priority.

High priority x**y (x to the power y)
—X {x made negative)
X*y {x times y)
xly (x divided by y!
X+Y {x plusy)

Low priarity x—y (X minus vy)

It's useful at this stage to know that we can do calculations in
command mode, without affecting any program in the ZX80
memaozry. For example, type:

PRINT 2**3%6 4+ 9 NEWLINE

The answer (57) comes up immediately, having been calculated in
these stages:

2~ 8
Bx6~48
48+9=57

Try doing more calculations in command mode, and make sure that
you get the answers you expect, following the given priority _‘cwmmm_
Suppose we want to change the order — remember the good ol
bracket? Things are what they used to be, and the ZX80 gives

26

absalute priority to calculations within a pair of brackets. Let's
change the last calculation ta:

PRINT 2*#3%(6+9)

This time the stages are:

H+9= 15
2= 8
8x15=120 {answer)

Even more complicated expressions? Maybe you need hrackets
within brackets within. . . . Remember that the ZX80 starts at the
innermost pair of brackets and works its way out. You don’t need
telling that brackets come in pairs — nor does the ZX80; it will not

allow you to enter a line with an odd number of brackets. Try this
expression:

PRINT 2*(3+16))+9

The answer is worked out in these stages:

3+16=19 (inner brackets)
2x19=138 (outer brackets)
38+9=47 (answer)

Now for & more subtle point. Take an expression like:

2427

108

This has te be worked out in two stages, and humans can take any
two of the three numbers for the first stage, and get the same answer
(6). Now calculate the answer in two ways using the ZX80.

PRINT 24277168 (this gives 6 as expected)
PRINT (24/108)*27 (gives us 0)

see what happened? We fell foul of the dreaded integer basic!
24/108 gives an answer a little over 0.2, and as we saw in Chapter 6,
integer basic reads 0.2 as @. Hence the answer to the whole sum is
given as §.

Now you know the full problem. Like Ulysses steering his ship
between the monster Scylla and the whirlpoot Charybdis, you have
to seta course to avoid your calculations going over + 32767, under
—32767 or between @ and 1. The only advice which one can give is
to keep cool and use brackets to steer one way or the other.

27

Exercise 8.1

Find the best way of working out these two expressions, and check
your answers with a calculator.

36990 d 45x730
54 40 25

Positive and Negative Numbers

Z%80 BASIC works with sets of positive and negative integers, as
shown on this number line

S WY T NN VNN WA NN SES S SUNF SO MO
—32767 - -4 -3 —2-1 0 1 2 3 4 5 32767
Negative integers Zero Positive integers

The — sign of a negative integer is aiways shown, but + signs of
positive integers are assumed. We can easily convert from positive
to negative, or vice-versa, by using an instruction like:

100 LET A=-A

We can obtain the absolute vaiue of a number by using the
statement ABS.

200 LET A=ABS{A)

Remember that ABS is one of the ‘integral functions’ which has to
be typed out in full. The ABS function converts all negative integers
to positive, and leaves positive integers unchanged.

e.g. ABS(— 1) =19
ABS(Td) =19
ABS(@) = @

Try working with some of these absolute and negative values, using
PRINT in command mode. Remember that ABS must always be
followed by brackets containing a number, a variable, or an
expression.

Now we have covered all the rules and instructions needed to do
calculations in integer BASIC. Here are some simple problems
which you will manage very easily.

I

i

Exercise 8.2. Temperature Conversion
Temperatures are increasingly being given in degrees Celsius (°C}.

28

<<£.m a program 1o take a Fahrenheit temperature, convert it to
Celsius, and print out the result. Remember that:

°C = (°F—32) x w

Exercise 8.3. Volume and Weight of Cuboid
A lead brick is 14 ¢m long, 9 ¢m broad and 6 cm deep. Write a
program to calculate the volume (=length x breadth x depth) and

%mﬂg\ the result in cubic centimetres. If 1 cubic centimetre of lead
weighs 1T grams, work out and display the weight of the brick.

We Learnt These in Chapter 8

Expressions

ABS (n) The absolute value of n.

Anything else

In BASIC, arithmetical operations are carried out according to
standard rules of priority.

The priority can be changed, if required, by using brackets.

Calculations can be done in command mode, without affecting
any programs in memory,

29

9

Over and Over and
Over Again

Remember the sorcerer’s apprentice in Chapter 32 Here is a simple
mathematical model of a broom filling a 150 gallon water tank at the
rate of 4 gallons of water per trip. Type in this program:

16 LETW=0
200 LET W=W +4
30 PRINT W,
A GO TO 20

Line 10 sets the water in the tank (W) at @ at the start.

Line 20 adds 4 gallons to the tank.

Line 30 prints the total number of gallons added to the tank (note
the comma).

Line 40 contains an important new statement saying ‘go to line 20
and continue ruaning the program from that line’. In other words,
‘take another trip to the well for more water’.

Can you predict the output of this program? Weil, now RUN it
and see if you were right.

GO TO is certainly a cheap way of generating numbers! We have
made a loop in lines 20 to 49, and each time round the loop we are
adding 4 gallons of water to the tank. it stopped at 368 gallons, but
only because the screen was full — the error code 5/30 tells us that.
No wonder your feet are feeling wet!

in Chapter 3 we saw that we need to inciude a ‘conditional jump’
in the loop to check whether the tank is full. Type in this program —
the first three lines are as before — and RUN it:

10 LETW=0

20 LETW=W+4

3¢ PRINT W,

40 IF W<I150 THEN GO TO 28

30

50 PRINT
60 PRINT
76 PRINT *“THE TANK I$ FILLED, O MASTER”

That warked pretty sﬁ__\ apart fromthe last 2 gallons which slopped
over, Line _ﬁs.m.ﬂ. the vital one, which is saying, ‘check the present
value of W, if itis less than 15@ then go to line 2¢ and round the loop

again, vcﬁ wﬁ.<< is not less than 150 then go to the next line (50)’.
BASIC is a nice concise language.

Relational Operators

The general form of our statement in line 40 is:

iF something is true THEN do something.
(e.g. W< 15 (e.g. COTO 2%

We must always follow the IF keyword with a statement using ane

.Q @mMr_,mmwm_.mmo:&onmﬁmaaEv_nrm%Cmmawo compare two
items:

= (equals)
< {is less than)
> (is greater than)

On m:rmﬂ,m_am of the relational operator are the two items being
noﬂ.:bm:&. l'hese may be variables, numbers, or expressions using
variables and/or numbers, as shown in these examples:

IFA=0 THEN . ..

IFB>99 THEN . .

IFC<D THEN . ..

IF 2¥E<50 THEN , .-,
HFF+999>13%G THEN | . .

We can also use the iogical o i i
perator NOT with the re
operators, like this: © relatonal

IF NOT A=75 THEN .,

" \ - means ‘if Ais not equal to 75 then

Similarly:

[FNOT B>100 THEN . . .
IFNOT C<66 THEN . . .

and so on.

31

IF Something is True THEN What?

We dealt with IF, so now for THEN, THEN is a token’ (SHIFT 3)
which always produces the [KI cursor, calling for a me&ﬂ&
statement to represent ‘do something’. ZX80 will accept any
keyword here, but only the following make sense:

PRINT
GO TO
LET
INPUT

STOP
POKE These will be covered

COSUB { in later chapters.
CLS
RET

Here are some examples of lines containing conditional statements:

19 1F Z>21 THEN PRINT “OVER 21 AND BUST"
20 |F Y =200 THEN GO TO 100d
30 IF X>300 THEN LET X =300

GO TO Where?

ur GO TO is compulsory or conditional, it must be
MMNM%%@M %\ avalid line number! In this way you can direct the Nxmw
to go to any line in your program, m:wm.ﬁ before or after the GO TC
line. You may write the line number either as a fine number, or a
variable, or an expression (of course, any variables used must have
Ummwﬁmwﬂmmmw\o: say GO TO a non-existent line, the ZX80 will GO
TO the first line following that one.

what About STOP?

With all this GO TOing in the program, it's as well to know how to
stop! Type in this simple number testing routine, which could form

part of a longer pontoon program.
10¢ LETT=18)
200 IFT>21 THEN GO TO 566

300 PRINT “YOUR SCORE IS ;T
566 PRINT “OVER 21 AND BUST”

32

RUN it — there is obviously something needed to stop the ZX80
going charging on and doing both lines 300 and 500 — so type in
400 STOP (keyword S). The error code 9/40¢ simply says that the
program has STOPped at line 46@. Now you can try putting in
different values of T in line 100 — make sure you get the answers
you expect.

Finally, here are two problems, each to be solved by a loop
containing an IF . . . THEN statement.

Exercise 9.1, Inflation

You earn £80 a week now, hut at the end of each year your pay is
increased by 20% to keep pace with inflation. How many years will
it take you to reach £1000 a week?

{New pay=old pay *12/10)

Exercise 9.2, Chess Prize

Aman so pleased the king of his country by teaching him chess, that
he was offered any gift he wanted. He chose to have gold coins put
on his chess board, 1 an the first square, 2 on the second, 4 on the
third, and so on, doubling each time. How many coins were
needed for the first 15 squares? Why not the first 16 squares?

We Learnt These in Chapter 9

Statements

GO TO nsends the ZX80 to the line numbered n (or if line n does
not exist, to the next line after n).

IF. .. THEN. IF tests whether some statement is trues: if it is, THEN
orders the ZX80 to do something {e.g. PRINT, GO TO, LET). If the
statement is not true, the ZX80 continues with the next line of the
program.

STOP makes the ZX80 stop the program here.

Anything else

Relational operators
A=B (A equals B)

33

C>D (Cis greater than D)

E<F (E is less than F) _
A statement like this always goes between 1F and THEN.

NOT is a logical operator which can be used with IF
e.g. IFNOT X=100 THEN GO TO 250.

34

10

Flowcharts

We are able to write quite complicated programs, now that we have
learnt about loops and conditional branching. At this stage, it is
worth reminding ourselves about flowcharts as an aid to good
programming.

Suppose you have some operation for which you want to write a
program - let’s use the sorcerer’s apprentice idea from Chapter 3
as an example. The idea of a flowchart is to split the operation up
into separate stages, to write each stage in a box, and to join the
boxes by arrows to show the order in which the stages have to be
done. We use boxes of these shapes:

Beginning or end. B

‘Processing block’ — one
stage of the operation which
needs no decision.

‘Decision diamond’ — here a
question is asked and the
flowchart branches to either
side depending on the answer.

35

Now we can draw up a flowchart for filling the water tank from
the well. Compare it with the original program in Chapter 3, and
with the mathematical model in the last chapter. Notice how the
place of the decision diamond is taken by the IF ... THEN . ..
statement.

Some people can carry a flowchart in their Wg.mmgm and type out a
program direct. However, most of us will benefit from drawing up a
flowchart on paper first. We'll see more examples om.!m_oénm,_mn\m for
ZX80 programs later. Also read through Chapters 5 and 7 of the

ZX80 Operating Manual.

Broom filling water tank from well

Pick up buckets

L

Go to well and
fili buckets

y

Return and
empty buckets
into tank

ts the tank
full yet?

Report
‘Tank full’

36

11

Data Please

Let’s go back to our program for converting temperatures, listed at

the end of the book as the answer to Exercise 8.2. It worked well,

but with the snag that to convert a different temperature we need to

re-type line 10 and RUN again. Surely we can do better than that!
Well, try this one:

40 INPUTF
5¢ LET C=(F-32)*5/9
60 PRINT F;"* DEGREFS F="":C;"" DEGREES C'*

We have replaced LET F=77 by a new statement INPUT F. Now
RUN the program — do you see the double cursor T15] on the
otherwise empty screen? The cursoris saying, ‘enter a number now,
and then press NEWLINE'. Do it now, type in 77 and then
NEWLINE. You will get the immediate output: 77 DEGREES F— 25
DEGREES C. The program has accepted and used the value for F
which you INPUT, just as though there was a LET F= 77 statement.
RUN the program again, and iINPUT different values for F.

Let's add more lines to make a better version:

10 PRINT “FAHR. TO CELSIUS CONVERSION'’
20 PRINT

30 PRINT “TYPE IN NEXT FAHR. TEMP. NOW'’
4% INPUTF

5¢ LET C=(F-32)*5/9

60 PRINT F;** DEGREES F="";C;"* DEGREES ¢
70 GOTO 39

This time we have added a title Jine 10) and a ‘prompt’ (line 3@)

which tells you what data is to be INPUT. Finally we have putin a

GO TO in line 76 to make the program loop back for more data.
RUN the new program, and type in lots of different temperatures.

37

Stilt something lacking, isn‘t there? Up to ten temperature conver-
sions are shown, but in rather a squashed up way, and then the
program stops with a ‘screen full’ error code. Try adding these lines:

45 CLS
65 PRINT

Much better now — a single answer printed and then a request for
more data. It's all thanks to CLS, which is an instruction to clear the
screen. We INPUT our next value for F, and then line 45 clears the
screen ready to receive the next answer printed by line 60. You'll
find that, in programs with lots of output, CLS is vital to prevent the
screen filling up and stopping your program.

Breaking Out of Loops

If you carry on using this program, you will notice that vou are in a
bit of a fix. What happens when you want to stop converting
temperatures? Sure, you can unplug the power supply, but then
your whole program is gone. You are in anumber INPUT loop, and
the way to get out of it isto input a letter (one which is not a variable
name in the program) instead of a number — this stops the program
with a 2/40 error code, meaning ‘variable name not found’.

Now a different kind of loop. Change line 40 to read 40 LET F =77,
and RUN again. INPUT has gone now, and we are in an infinite loop
caused by bad programming. The poor old ZX80 is buzzing round
and round lines 3¢ to 70, and while this is happening there is no
output, only a grey screen. Press the BREAK key — it's at the bottom
right of the keyboard - to get out of the loop. BREAK is a certain
way of stopping the ZX80 while it is working with a blank screen.

Exercise 11.1. Running Average

You remember how to work out the average (arithmetic mean) of
some numbers — add them all up and divide by the number of
ftems. Write a program in which you INPUT items one at a time and

calculate the running average (the average of ali the items entered
50 far},

We Learnt These in Chapter 11
Commands

BREAK stops the ZX80 while it is working.

38

Statements

INPUT to stop the program and insert numerical data,
CLS to clear the screen and make room for more output.

Anything else

INPUT loop. Makes the 7X80 re
peatedly stop t¢
then process it. y stop to accept data and

Enter a letter to break out of 2 numerical INPUT loop.

39

12

First Edition

We know two ways of correcting mistakes so far. We can use
RUBOUT while we are typing a line or an INPUT, or we can delete
or replace an entered line by typing its line humber pius a new
version. . .

If we need to make a small change in a long, entered line, the first
method will not work and the second takes alotof time. The answer
is to EDIT the line,

The Current Line Pointer

Let’s look at the program first. Assume that you have m.dm \><mwmm.w_
program from Chapter 11, listed in the answer to Exercise 11.1. We
want to make changes to one of the lines in the program:

Line 4@ tnsert THE between INPUT and NEXT
Delete ITEM and insert NUMBER in its place.

If you look at the program on the screen you will see Emﬁ one of the
line numbers is followed by a black cursor with a white m:oérmma
— the current line pointer. Unless you have moved it, it will be at
the last line you typed in. . .

The first essential is to move the current line pointer to line 49,
and we can do this in different ways:

(1} Use the key {SHIFT 7) to push it up, line by line.
(2) Type LIST 46 NEWLINE. o ‘
{3) Send the current line pointer to (theoretical) line & by typing
LIST NEWLINE or HOME (SHIFT 9), then use key<»(SHIFT &) to
push it down, line by line,
Try all of these methods, until you really can make that current
line pointer go where you want.

40

EDITing a Line

Now type EDIT (SHIFT NEWLINE) and you will see line 46 appear at
the bottom of the screen with the usual [K] cursor after the line
number.

Press the nv (SHIFT 8) key, and see the cursor skip past the
keyword PRINT and change to {L]. Keep pressing oy repeatedly until
the cursor is just beyond the T of INPUT, and then type in your
addition which is;

space THE

Now bﬂmmmnVQ:mfrm cursor has gotto the end of ITEM — if it goes
too far, bring 1t back with Au (SHIEFT 5). Press RUBOQUT four times ta
get rid of ITEM and then type NUMBER in its place.

Finally press NEWLINE, and your EDITed line goes into the
program in place of the original version.

Renumbering Lines

We'lf change line 100 to become line 195. Hard to do on many
computers, but child’s play for the ZX80.

Type LIST 10¢ and then EDIT, to put line 100 on the chopping
block. Press RUBOUT once, to get rid of the second &, type 5inits
place, and then NEWLINE to put the renumbered line in the

program. Old line 100 is still there — you'll need to type 160
NEWLINE to erase that.

Anocther use for LIST

When a program takes up more than 22 lines of screen, the ZX80
can only show the {ast line entered and some of the other lines.
With a very long program, the height of screen available shrinks so
that even less can be seen. Picture the top part of your screen as a
window which is only high enough to view part of the program at a
time. Then you can move the window up and down by typing LIST
(to see the beginning of the program) or LIST (line number to see
that line plus as many other adjacent lines as possible.

Exercise 12.1. Editing

EDIT your present program as follows:
Change line 105 to read:

41

105 PRINT N;”* NUMBERS SO FAR”

Renumber fine 110 to become 130
Type two new lines:

1@ PRINT
120 PRINT “AVERAGE=""; A

RUN the program to make sure it works, but don't lose it — we will
need it in Chapter 13.

We Learnt These in Chapter 12

Commands

EDIT brings the current line to the bottom of the screen for
editing, .)

LIST shows the beginning of a program with up to 22 lines in all,
and sets the current line pointer at @,

LIST n shows line number n of the program, with up to 22
adjacent lines, and sets the current line pointer to that line

number.

Anvything else

Vertical arrows to move the current line pointer up or down.
Horizontal arrows to move the EDITing cursor backwards or

forwards on a line.
EDiTing and renumbering lines.

42

13

A Program Worth Saving?

The ZX80 has a nominal 1K of RAM, which can hold 1024 bytes of
information. Any one of these can be produced immediately on
demand. Thisis where the program which you are currently using is
stored. If you put in another program, or if you switch off the ZX80,
all the contents of the RAM are lost. Hence you must have backing
storage, in which you can keep finished programs and data until you
need them again.

Most domestic cassette recorders can act as backing storage for
the ZX80, and since vour longest programs will take less than a
minute of recording time, costs are low.,

How to SAVE a Program

Ideally, the cassette recorder should be of good quality, with clean
recording and playback heads, and with 3.5 mm jack sockets for
microphone and earpiece/extension speaker. If it has a round 5-pin
DIN socket for the microphone, you will need an adaptor from a
radio parts shop. A tape footage counter will be of tremendous
value for finding programs on a fong tape.

The following routine has given me good results, but bear in mind
that cassette recorders vary and you may have to experiment a little.

(1) Wind your tape to the beginning, set the counter to zero, and
then wind the tape on to a suitable space.

(2) Most tape recorders now have automatic recording level
control. If not you will have to find a suitable recording level
setting.

(3) Make a written note of the counter reading and the program to
be recorded. If no counter, record the program ftitle on the
tape, using the microphone on your tape recorder.

43

(4) Use one of the Sinclair double jack plug connectors to join the
ZX80 "MIC’ socket to the ‘MIC’ socket of vour recorder.

(5) Start the tape recorder on ‘RECORIDY, press SAVE and
NEWLINE on the ZX80.

(6) For 5 seconds you will see a grey, even pattern ail over the
screen. Then you will see a rapid succession of contrasty, black
and white lines — these show that the program is being
recorded. When the recording is finished, the program listing
reappears on the screen.

(7) Wait about 5 seconds, without stopping the recorder, and then
press SAVE and NEWLINE again to make a second recording.

| have found that my first recordings are hard to LOAD, while
second ones are alright, perhaps due to some trouble with
automatic recording level. In any case, it's good practice to SAVE a
program twice, ‘just in case’.

How to LOAD a Program

Some time you'll want to put your program back into the ZX80 to
RUN it again or improve it. This is the way to do it.

(1) Wind your tape to the point where you started recording the
program, using the counter or the voice identification as a
guide.

{2) Set the TONE control to MAX, or TREBLE to MAX and BASS to
MIN. Set the volume control to MAX.

(3) Connect the ZX80 ‘EAR’ socket to the 'EAR’ socket of your tape
recorder. You can also use the extension loudspeaker socket,
but note that the DIN socket is no good, as it does not give an
amplified signal.

(4} Press LOAD and NEWLINE, and immediately start the recorder
on ‘PLAYBACK'.

(5} For 5 seconds you will see the grey even pattern, and then this
will change to ‘heavy driving rain’ falling from top right to
hottom left of the screen, showing that the program is
LOADIng.

(6) After asuccessful LOAD, the screen will clear and some or all of
the new program will be seen listed on the screen.

(7) If this does not happen after a minute, or if there are other signs
of a bad LOAD, you will have to stop LOADing by pressing
BREAK, or else by unplugging the ZX80 power supply. Rewind
the tape and try again, perhaps at a lower volume setting.

44

Saving Variables

If your program has been RUN before SAVEing and some variables
have been INPUT, all of these will have been SAVEd with the
program. If you want to avoid losing these variables next time you
use the program, type GO TO 1 instead of RUN. With some long
programs you can save RAM space in this way by generating
variables and then erasing program lines to make room for more.

We Learnt These in Chapter 13

Commands

SAVE to record a program from the ZX80 for future use.

LOAD to put a program from tape into the ZX80.

GO TO 1 (instead of RUN) to run a program without losing
variables which are already in memory.

45

14

Over and Over . . .
Ten Times Exactly

In Chapter 9 we met the Joop, and saw how important it was to
include an IF .. . THEN statement to jump out of the loop when
some given condition was met. You could easily design a program
to take exactly ten trips round a loop . . . couldn’t you?

10 LET =0

20 LET)=]+1

36 PRINT J:*° TIMES ROUND THE LOOP”
4B IF NOT | =10 THEN GO TO 20

50 PRINT

60 PRINT “STOPPED FOR A REST”

Type it and RUN it

No trouble at all — but wait — ZX80 BASIC has a special set of
instructions to do just the same job in a more economical and
flexible way.

Delete line 19
Rewrite line 200 FOR =1 TO 10
(FOR is keyword F, TO is token 4)
Rewrite line 4@ NEXT J
(NEXT is keyword N)

Now RUN it again — the output is identical to the first — FOR/NEXT
is a real winner! The complete program is shown opposite, together
with a flowchart. Here are a few general points:

(1) | is the foop control variable, which can be given any single
letter name from A to Z, though you must not use any variable
names which are already in your program.

(2) FOR]J=m1TOn
n must be greater than m, otherwise you will only go once

46

Ten times round a FOR/NEXT loop

20 FOR=1to 14

30 PRINT J; TIMES

ROUND THE
LOOP"!
—
4B NEXT) (
Yes

Setd=1

(3o something s

increase J by 1

ks J
greater than 1¢
?

50 PRINT

668 PRINT “STOPPLD

FOR A REST"

Rest of program

¥

ﬂ Stop v

47

round the loop. Apart from this, m and n may be any number
within the range + 32766, any variable {previously defined} or
any expressions using variables, numbers or both. All these are
fegal, for instance:

FOR] =0 TO 180

FOR J=~10TO -5
FORI=ATO 25
FORI=BTOB+19
FOR]=23+BTOA*17

(3) NEXT]increases | by 1 and then compares it with n. 1f] is equal
to or less than n, then we go back and through the loop once
more. If) is greater than n we go on to the line after NEXT]. Note
that J endsup asn+1.

(4) Inside the loop may be any number of lines with any of the
usual BASIC statements. You can eveninclude an IF. . . THEN
statement to jump out of the FOR/NEXT loop before it is
finished.

(5} You can have a FOR without a NEXT — the program wilt ignore
it. However NEXT without FOR will stop the program with a 1/n
or 2/n error code.

Now try these examptes, using FOR/NEXT loops in your answers.

Exercise 14.7. Savings

You are saving up for a new ZX80 at £99.95, and you put a different
amount inte your piggy bank each month for a year. Write a
program to INPUT each monthly amount, and calculate and display
the total saved at the end of each month.

include a reminder to send for your ZX80 when you have saved
enough money.

Exercise 14.2. Compound interest

You put £100 into a building society which pays 9% compound
interest annually, and leave it there for 7 years. Write a program to
work out the capital at the end of each year, and printout a heading
and a table showing YEAR and CAPITAL. The vital maths is:

Lo 100x109
After 1 year, capital = 00 =169
After 2 years, capital = ﬁw%m etc.

48

We Learnt These in Chapter 14

Statements

FOR ... TO ... NEXT to send the ZX80 round any loop a fixed
number of times.

49

15

Big Fleas Have Little
Fleas . . .

Although our programs in Chapter 14 all had a qum.m .mOEmef_z
loop, you are by no means restricted to one. Type in this program
and RUN it.

i) FOR]=1TOS5
2 PRINT “LOOP 17
3¢ NEXT)
995¢ PRINT
996 FOR |=32760 TO 32766
99701 PRINT “'LOOP 2"
9986 NEXT)

There is usually no objection to using the same variable to control
more than one loop — it is reset to the correct nurmber when it

meets a new FOR statement. You may find that it helps in
programming to mark the joops as above.

Loops Within Loops

Now take a look at this program and see if you can predict what the
printout will be:

10 FORJ=1T704

20 PRINT “OUTSIDE LOOP”

3 FORK=1TO3

49 PRINT, “INSIDE LOOP”

50 NEXT K

60 NEXT)
Type it and RUN it -— were you right? This Wmﬁ_‘dm.mwi_u_mﬂ example of
nested foops, which need a little careful organisation.

50

{1) Your loops must not overlap — inner loops must be entirely
within outer loops.

(2} You must use different control variables for nested loops.

(3) Subject to the above rules, you may nest up to 26 loops if you
wish. At this point you run out of variables!

You must be getting good at predicting outputs by now — try your
hand at this one.

19 FORJ=1TOQ3

2¢ PRINT "OQUTSIDE LOOP”

30 FORK=1TO3

40 PRINT, "1ST INSIDE LOOP”
56 NEXTK

60 FORK=1TO?2

70 PRINT,, “2ND INSIDE LOOP"’
80 NEXTK

99 NEXT |

And now for a tricky problem.

txercise 15.1. Number Square

Here is one of the number squares that you used at school:—
0 1 2 3 4 5 6 7 8 9

i0 11 12 13 14 15 i6 17 18 19
20 21 22 23 24 25 26 27 28 29
30 3 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

Write a program to draw one of these squares. Clue — use two
nested loops and make the maximum use of] and K.

51

Exercise 15.2. Chesshoard

Write a short program using nested loops to draw a picture of a
chess board. Not a very good picture, because you'll have to use W
for a white square and B for a black square. Spread out your letters
with spaces in between, and remember that the bottom right square

is white.

W.BWBW.. .
BwW...
W B, ..
B.

ZwZw

B
W
B . Loete.

We Learnt These in Chapter 15

A program may have any number of separate m_O_Qme!ﬂ foops.
Loops may be nested within each other, provided that certain

rules are obeyed.

52

16

The ZX80 Gets Friendly

We know how to handle numbers in flexible ways by making use of
numerical varfables, defined either by LET or INPUT, and we can do
the same with strings.

Literal Strings

We met these in Chapter 4. We simply use PRINT foliowed by the
string enclosed in quotation marks, and the string may contain any
characters except "'. Note that, though a string may consist of a

number we cannot do any arithmetic with it — it looks like a
number but behaves like a word.
10 PRINT 197

20 PRINT " LORDS A-LEAPING"
The output is:
16 LORDS A-LEAPING

Literal strings are very useful, provided that we only want to use
them once in a program (or once each time round a loop which
contains them).

String Variables

Type this program and RUN it:

100 LET A$=""NINE"
P10 LET B$="" LADIES DANCING”
120 PRINT A%;B$

Here we have two string variables. The first is “NINE” (it could
equally well have been 9"} and is called A%, the second is
“ LADIES DANCING” and is called B$. These are kept in the ZX80
memory (until we change them or switch off) and we can use them
as often as we like. All the usual punctuation rules apply, and we
can use string variables in loops. Try adding these lines to your
program:

13¢¢ PRINT

149 PRINT 8%, A%

156 PRINT

160 PRINT A%

170 PRINT

189 PRINT B§

RUN the program and then add these lines:

115 FORI=1TTO9
125 NEXT}

and RUN again.
IU's quite an art, handling strings — you need plenty of practice,
but you also need to know these rules:

(1) Astring variable consists of any characters — numbers, letters,
graphic blocks, punctuation (but not '}, and spaces — enclosed
within a pair of quotation marks.

(2) 26 names are available for string variables, consisting of a letter
followed immediately by § (you can use, for instance, a string
variable A$ as well as a number variable A in one program).

(3) Youcan define string variables with the statement LET, and you
must define them before you use them.

(4) String variables are outputin the usual way by using PRINT, and
follow all the usual punctuation rules. One single PRINT line
may contain any mixture of string variables, number variabies
and literal strings.

{5} If a space is required between a string variable and anything
else, it must be included within the guotation marks.

This loop program illustrates many of these rules:

100 LET A$='" GREEN BOTTLE”

110 LET B$ =" HANGING ON THE WALL"”
126 FORJ=0TO 10

130 PRINT 10--);

140 PRINT A$;

150 1FNOT 16—f =1 THEN PRINT “S'";

160 PRINT

178 PRINT, 8%

180 NEXT}

54

d:.m next exercise is equally daft, but it does give practice in
playing with strings.

Exercise 16.1. Songwriter

Write a program to print this verse:

5 MEN WENT TO MOW

WENT TO MOW A MEADOW

5 MEN

4 MEN

3 MEN

2 MEN

TMAN AND HIS DOG ’
WENT TO MOW A MEADOW

If you are feeling really confident, turn it into an INPUT loop, ask
how many men (T up to 12), and print the appropriate verse.

INPUT for String Variables

In Chapter 11 we used INPUT to stop the program and enter a

number variable. We can do the same with astring variable. Try this
program:

_ammmzjﬂ:j\mm_ZJxOC%Z}gm ZO<<:
20 INPUT N$ ’
36 CLs

49 PRINT

56 PRINT “THANKS VERY MUCH, 77, N
60 PRINT

70 PRINT “WHAT A PRETTY NAME"

Zoé.,\o: can join in the ancient sport of computer-baiting,
otherwise known as ‘typingsilly names’. Notice that you don‘t have
o type quotes round your name, they were there waiting for you
with the .cursor [, Now if we add three more lines to the
program:

80 PRINT
90 PRINT “TYPE NEXT NAME NOwW*
100 GO TO 20

we have a string input foop, and you can g0 on typing names for as
long as you like, What then? These loops are very tricky to get out
of, because whatever we type in is going to be a legal string,

55

Whatever you do, don’t type EDIT, the result is a complete seize-
up! Press BREAK and NEWLINE simultaneously and repeat this untit
you are out of the foop {the theory is that eventually you press
BREAK while the ZX80 is working, and this stops the program).

Exercise 16.2. Form Filling

Write a program to make the user INPUT his Christian name,
surname, age in years and home town. Write a sentence on two
lines displaying all this information, and then thank him very much.

We Learnt These in Chapter 16

Statements

LET to define a string variable (e.g. LET A%="ABC"}. .
INPUT stops the program to allow the user to insert a string (e.g.

INPUT B%).
PRINT to print a string variable (e.g. PRINT C#).

56

17

Natural Breaks

One of these four things wilt stop a program running:

(1) It has come to an end.

{2} It has reached a STOP statement.

(3) It has filled up the screen, or produced some other error,
(4) It has reached an INPUT statement.

The last, INPUT, is the only convenient way of stopping in the
middle of the program, so that it can be easily restarted. Here is an
example:

100 LETP=0

118 CLS

120 LETP=P+1

130 FOR|=1TO 84

140 PRINT “PAGE ”;P,

150 NEXT |

166 PRINT “/PRESS N/I. FOR NEXT PAGE”
176 INPUT A%

180 GOTO 110

RUN it, and press N/L (short for NEWLINE) several times, These are
the important stages of the program:

(1} Clear the screen.

{2) Collect up to one screenful of output.

(3) Give a prompt, and then pause for iNPUT so that the current
screenful is displayed.

{4) INPUT something so that the program resumes and goes back
to1.

We can INPUT any string we like at Stage 4, but it is enough just to
press NEWLINE. This INPUTS ‘nothing’, technically known as the
null string.

57

Branching at an INPUT Pause H. The YES/NO program
Another way of using INPUT is to give the user a choice of two or “
more branches to different parts of the program: (_start)

136 PRINT “TYPE YES OR NO'”
110 INPUT A%

1. Subject to the attentions of vandals

120 IF A$=""YES" THEN GO TO 200 W .
130 PRINT “YOU TYPED NO” Print "Type yes
140 STOP

200 PRINT “YOU TYPED YES”

RUN the program twice and type "YES'" and “NQO'', and make sure : Y
it works. Now for the snag — RUN again and type "CODFISH’’ (or i tnput an
anything else you like). This program depends on having nice H answer
obedient users who will follow instructions, but beware! The world
is full of vandals whose only idea is to make computer programs
‘crash’. Here is an example of a vandal-proof program to do the

same job: _—
106 PRINT “TYPE YES OR NO'* What was alse
11 INPUT A% typed in ?

120 F A% ="YES” THEN GO TO 200
130 IF AS="NQ” THEN GO TO 366
149 COTO 119

200 PRINT “YOU TYPED YES”

210 sTOP

306 PRINT "“YOU TYPED NO' : Print * You
typed no’

You can’t get round that one, can you? At the cost of two extra
lines, vou have been made to obey the instruction, and it's worth
looking at the flowcharts for the two programs 1o see how they :
work. Remember that it's an imperfect world, though, and withour |
1K RAM we can't always spare the space to make our programs
crash-proof.

We Learnt These in Chapter 17 ” > ﬂ@wwa;mmm

Statements

INPUT to make the program stop and display screen contents.

Anything else

Making the program branch, under control of a string INPUT hy
the user.
‘Crash-proof” programs.

58 59

The YES/NO program 2. Vandal-proof version

Print ‘Type
Yes or no’

y

Input an
answer

h

Yes ¢ \
answer ‘yes'?

Printt *You
typed no’

Print “You
typed yes’

60

18

A Matter of Chance

Random Numbers

What are they? Let's consider a random number generator we have
all used, the dice. We know that it can only give numbers from 1 to
6, and also that unless it is loaded or very misshapen, each number
is equally likely to appear. Since it is an unintelligent cube of wood
or plastic it is not affected by anything that has happened before,
We can turn these observations into general rules for random
nuntbers:

(1) A random number is one number drawn from any given set of
numbers.

{2) Each number in the set is equally fikely to be drawn.

(3) The draw is completely unaffected by previous draws.

The ZX80 has a random number function, and we’ll use this to
throw a dice 12 times:

100 FORK=1TQ 12
110 PRINT RND{g) "™,
120 NEXT K

(There is no keyword for RND, it has to be typed in full). RUN the
program and write down the 12 numbers, then try afew more RUNs
it you fike. Certainly they are all between 1 and 6, and they look
reasonably random.

Now unplug the power supply for a moment, re-type the program
and RUN agair. Numbers seem familiar? They are identical to the
previous batch! The problem is that the ZX80 i using a fixed ‘seed’
number and cleverly calculating a fist of numbers from this. Since
our rule 3 has been broken, we call these pseudo-random numbers,
and these are what most microcomputers deal in.

61

Games based on a series of numbers that everyone knows are a
bit one-sided, but luckily ZX80 hasthe answer. Add this line to your
program:

180 RANDOMISE
(RAND =keyword)

Every time the ZX80 comes to the RAND statement, it picks a new
random seed number from its own ‘works’, and all the pseudo-
random numbers in the program come from this seed, RUN again,
and you start with a new seed number, and a new set of pseudo-
random numbers.

in passing, let us note that you can choose your own seed number
(n} between 1 and 32767, by typing RANDOMISE(n).

Let’s extend our program now to print cut more dice throws:

19 RANDOMISE
9 FOR}=17T0 20
169 FORK=1TO 12
11 LET D=RND{6)
120 PRINT D'
130 NEXT K

148 PRINT

1560 NEXT)

This time we have defined a variable as RND(6), using a LET state-
ment, Of course, we are not limited to numbers from 1 to 6. We
could change to different games:

RND() Penny tossing (1 =tail, 2 =head)
RND®) Dartboard
RND{36) Roulette

You'll find that RND(1) is nat a great help — try it!

Random Branching

This is a useful little trick to make your program branch in two
different ways under control of a random number. The vital
statement is of the form:

100 F RND(2)= 1 THEN GO TO 2006

RND(2) can only be 1 or 2, so that there is an even chance of going
on to line 200 or simply to the next line after 100. Here is a more
elaborate program using this idea:

70 PRINT
8% PRINT

62

9¢ PRINT
108 PRINT "YOU SET THE ODDS ON GETTING HOME'
110 PRINT “THE ODDS ARE T IN o
120 INPUT A
139 CLS
135 LET X=RND(A)
B IF X=1 THEN GO TO 200
150 PRINT A—1;" TO 1 AGAINST GETTING HOME"
160 PRINT
178 PRINT “YOU DID NOT MAKE T
1890 GOTO 79
200 PRINT “YOU GOT HOME'
21 PRINT
220 PRINT “THE ODDS WERE 7eAT T TO T AGAINSTY
230 GOTO 76

j;mﬁ is a flowchart for a simpler version of the program using odds
of 1in 3 shown on the next page.

Probability

With random numbers under your belt, you can really go to town
on programs to study probability. You may want to take the dice
throwing programs further, perhaps by calculating and printing out
the frequency of ali six possible results (there are two dice throwing
programs at the end of this book). On the other hand, you could
turn your attention to penny tossing, and here is an exercise to start
vou off.

Exercise 18.1. Penny Tossing

You are tossing pennies two at a time, and score 1 for a tail and 2 for
a head. You can get four possible results:

TT (score=2)

T H {(score=3)
H T (score=3)
H H (score =4)

Write a program to toss your pennies 100 times, and add up the

:EEUQ.Q times you score 2, 3 and 4. Print out the results neatly
and see if they are as you expect.

63

64

Input the odds,
1in3

Let Xbhea
random number]
from1to3

No (X = 2 or 3}
Is X equal !
o 17?]

Y

Print ‘You did
not make it’

Print "You
got home’

2

Project

Thisis alonger-term project with no answer in this book, to design a
game of golf for the ZX80. Start with a single hole of random length
between 120 and 550 yards. Make the player pick a suitable club
say from No. 1 (driver, up to 250 vards} down to No. 10 (putter, up
to 5 yards). Give each club a range consisting of a fixed part plus a
random part. Fix bunkers if you like, with some kind of penalty.
After each shot, loop back for another choice of club for the next
shot. When you have the single hole perfected, build another loop
around it so that you have an 18 hole course.

We Learnt These in Chapter 18

Statements and Fxpressions
RND(n) to give a random number from 1to n inclusive.
RANDOMISE to set the seed number (for generating random
numbers; to a random number.
Anything else

Computers usually deal in pseudo-random numbers.
Program branching under control of random numbers,

65

19

It Draws Pictures as Well?

The Characters

Type this short program and RUN it:

1M FOR=0TO 63

119 PRINT CHRE (' ",

120 IF (J/8)*8 =) THEN PRIN

138 IF (/8)*8=] THEN PRINT

T4 NEXT
Notes: CHR$ must be typed in full, .
Lines 120 and 130 are simply to leave a blank line after each
line of 8 characters.
The program will give you a neat print-out of most of the characters
available from the ZX80 keyboard. Every character has a code
number, and the statement:

PRINT CHRE ()

is saying, 'PRINT the character which has the ﬁooﬁ number J'. @ Wm
the code number for a space, and 1 is for the null string — they don't
show up. Some are missing:

e FOR[=212TO 256

would give you all the rest, including keywords and token words,
Now change line 110 to read

110 PRINT CHR$ (1+128):" o

() being still @ to 63) and RUN again. Thistime you have the inverse
of your first 64 characters, white on black instead of black on white.

Your ZX80 Manual shows a complete list of characters, together
with their codes, on pages 75 to 77,

66

Graphic Blocks

Have a look at page 78 of the manual. Ten of these blocks (codes 2
to 11) are available from the keyboard, and the inverse of these
(codes 130 to 139) via the CHR$ function. Add to these the inverse
space (a black square, code 128) and any other characters (inverse
or otherwise) which seem useful, and you have the basis for all sorts
of simplie pictures.

Let’s look at some ways of drawing chesshoards:

19 LET A$ = “CHESSBOARD 1"
20 PRINT A%

30 PRINT

49 FORJ=1TO4

50 PRINTY 8§ § 8 &
60 PRNT"S S § § ~
76 NEXT |

W9 PRINT

119 PRINT

120 PRINT A1

130 FORK=0TO 7

4 FORL=0TO 7

150 1F NOT (K+ L/2)*2 =K+ L THEN GO TO 180
160 PRINT 7,

170 GO TO 199

186 PRINT “§:

190 NEXT L

200 PRINT

210 NEXTK

300 PRINT “PRESS N/L FOR MORE'”
31 INPUT 8%

320 CLS

330 PRINT A% 11

340 PRINT

350 FORM=1TO 4

360 PRINT " a"aMa®

370 NEXT M
399 PRINT
400 PRINT . CAND v
410 PRINT
420 PRINT .., CHRE(137)
Chessboard 11 (lines 130 to 218) is the most useful one, since the

squares are drawn one by one, and we can use conditional
branches to print other characters on the squares when we choose.
Thisisthe basis of the Fox and Hounds game at the end of this book.

67

The Screen

We'd better have a look at the space that we’ve got to draw on. A
very simple program will fili the screen:

10 PRINT "“ZXx80";
20 GOTO 18

Count along the top line — eight ZX80s equals 32 characters
altogether. There are 23 lines from top to bottom, plus the ‘screen
full’ code, but we really ought to leave space free for an INPUT to
continue the program. Let’s see how much we can squeeze in:

16 LET A=5

20 FORI=1TOA

3 PRINT “ZX80°';

40 NEXT]

50 PRINT

66 PRINT “HOW MANY ; CHR$(212); “ZX80"; CHR$(212)75
DO YOU WANT?;

76 INPUT A

8 CLS

ap GO TO 20

You'll find that 176 is the maximum - 22 lines of 32 characters. The
- at the end of line 68 is needed to squash the input cursors onto the
hottom line. Note that we did the ‘impossible’, printing " on the
screen by using CHR$(212).

This is the deepest screen available. Remember that a long
program borrows RAM from the screen display department, and
reduces the depth of screen accordingly. You will often have to
compromise between a long program and a nice display.

The next program is called ‘The pyramids were not builtinaday’:

1068 LET N=RNDI{16)
2080 FORR=1TON
I¢d FORB=1TON
350 PRINT CHRE(128);
ARG NEXT B

3¢ PRINT

6 NEXTR

700 PRINT “PRESS N/L FOR MORE”
718 INPUT A%

7Hy CLS

730 GO TO 100

Run it and press NEWLINE a few times. By the way, you are now ina
string input loop, and we saw in Chapter 16 that you can get out of

68

the i i i i i
mn_,wm%,\ pressing BREAK while the ZX80 is working with a blank

‘I had something a bit more pointed i ind’
e pointed in mind’ (Pharach Cheops

Right, let’s try:
300 FORB=1TON-R+1
You've got it the wrong way up!’

300 FORB=1TOR

‘Much better. Let's have a look at the back’. Add these lines:
250 FORS=1TO N-R+1

260 PRINT © .
276 NEXTS

‘Keep on trying. | think you're [it

. > getting nearer to it’, Over to yo
now, | have not Eoﬂmﬁa out the answer to a real pyramid shape. W\QM
rao.é E& you could tidy up the staircase by using CHR$(132) at the
beginning of each line of blocks.

Exercise 19.1. Areas of Rectangles

Easy graphics, illustrating a computer-assisted learning program for
young sister or brather! Write a program to draw a rectangle with
random length and breadth, show its dimensions, ask the user to
input area, and check (and if necessary correct} the answer.

We Learnt These in Chapter 19

Expressions

CHREn) is eguivalent to the charact . . o
number n. aracter which has the code

Anything else

fnverse characters (white or black) obtainable by using CHR%$(n).

G ; X
%mﬂwﬁmww%m\ ten on the keyboard and ten obtainable by using

Screen size, 22 lines of 32 characters each >
e - . plus one line for an

69

20

Playing with Strings

Some programs put words together. You may have read about the
theory that, given {a) a number of monkeys with typewriters and (b)
infinite time and paper, you would eventually get the complete
warks of Shakespeare. Let’s try it.

1 RANDOMISE

9 CLS

100 FOR]=1TO 80

200 FOR K=1TO RND(8)

210 LET A=RND(26)

224 PRINT CHR$(A +37);

300 NEXT K

310 IF RND(15) =1 THEN PRINT """
350 PRINT 7

4 NEXT |

48¢ PRINT

490 PRINT

5P PRINT “PRESS N/L FOR ANOTHER PAGE”

516 INPUT A%
520 GO TO 99

RUN and press N/L a few times. You may recognise an odd word,
hut | have seen nothing of literary merit yet!

Heads and Tails

After that diversion, we'll pull a few words apart. Type and RUN this
program:

10 PRINT “TYPE ANY WORD NOW"
200 INPUT A$

70

30 LET A=CODE(AS}

40 PRINT

50 PRINT “A%="":A%

68 PRINT

70 PRINT "CODE(A%) ="":A
8% COTO 19

INPUT the words ‘ABLE', ‘BAKER’, ‘CHARLIE’. Check page 76 of
the ZX80 Manual where you will see that 38, 39 and 40 are the
codesforA, Band C. The expression CODE (string) always gives you
the code number for the first character in that string. We can use
CODE with a string variable as above, or with a literal string (which
must be in quotation marks).

Now we'll change our program to use another expression, TL$:

1 PRINT “TYPE ANY WORD NOW”
20 INPUT A%

30 PRINT “A%="" A%

48 LET B =TLS(AS)

50 PRINT “TL$="":B%

600 PRINT

7 GOTO 18

Once you have RUN this program, you'll be well aware what TL$
doesto astring! TL$ (string) chops off the first character and discards
it, leaving the rest of the string (TL =tail). Try INPUTting some single
character strings, and the null string (press NEWLINE to INPUT
nothingl. All of these give TL§ =the null string.

Here is a program using CHR$, CODE and TL§ to chop up a word
into separate letters and give the code number for each letrer:

10 PRINT “TYPE ANY WORD NOwW'’
20 INPUT A%

i CLS

49 PRINT A%

56 PRINT

6t PRINT CODEIAS), CHRE (CODE(AL)
78 LET A%—TL$ (A%

8 IFCODE(A%) =1 THEN GO TO 10
9 GO TO 6P

Note how we print the code of the first letter, and then the actual
letter by using CHR%. Then we discard the first letter by using TL,
and loop back to 60 to deal with the next letter. When nothingis left
(null string, code = 1) line 80 sends you back to the start.

71

Dealing with Numbers

it is sometimes useful to take a number and turn it into a string, so
that we can use these string handiing expressions on it. We use the
expression STR$ to do this, e.g.

1% LET A%=STR$ (A) where A is a number variable
20 LET B$=5TR% (999)

(LET B$=7999"" would give the same result). A and 8% are now
strings, though if PRINTed they look like numbers. Note that we
cannot convert these strings back directly into numbers, However,
if we separate them into individual characters by the methods
described previously, we find that the codes of these characters are
exactly 28 more than the numbers themselves, so that we could
laboriously put the number together again. Here is a short program
in which you can check what is happening:

1 PRINT “INPUT A STRING OF 10 DIGITS”
110 INPUT A%

12¢ PRINT

13¢ PRINT “THE STRING WAS ;A%

149 PRINT

150 PRINT

160 PRINT “CHAR.’,“CODE OF”,,"CODE — 287
1766 PRINT,“THAT CHAR.”

180 PRINT

200 FORJ=1TO 10

210 LET N=CODE (A

220 PRINT CHRS (N),N,, N-28

230 LET A%=TLS (A%)

240 NEXT)

We lLearnt These in Chapter 20

Expressions

produces the code number of the first

character in the string.

TLE (string) is egual to the tail obtained by discarding the
first character from the string.

STR (number or changes the number to a string having the

number variable} appearance of the number.

CODE {string)

72

21

Line "Em Up!

We are going back mainly to numbers in this chapter.

Dummy Variables

i your program has a simple loop in which a variable (number or
string) is mm:mqmﬁmg or INPUT, then each time the ZX80 goes round
the loop it overwrites that variable and it is lost.

100 PRINT “TYPE IN A NUMBER"
116G INPUT A

126 CLS

200 PRINT “YOU TYPED IN ;A
29¢ PRINT

300 GO TO 100

mom._mgamm it happens that we want to keep the old value of the
variable to compare with the next one. In that case we make a
dummy variable of it. Add these lines to the program:

10 LETB=6
210 IFA=B THEN GO TO 250
220 PRINT “THATS A CHANGE”
230 PRINT “IT WAS :B;"* LAST TIME"
240 GO TQ 276
250 PRINT “'SAME AS LAST TIME
270 LET B=A

Now we have built in a short memory for A in the form of the
mcw:.B«\ variable B, and in line 210 we compare A with B (the
previous value of A). We can use dummy string variables in just the
same way.

73

Arrays

ZX80 BASIC allows up to 26 single dimension arrays. An array
provides a permanent memory for a setof numbers, and we can call
up any member of the set at will and do any of the usual operations
on it. This is how they work:

19 DIM N(3)

s PRINT N{2), N(1), N3}, N(@)
100 LET Ni@y =12

118 LFT N{1)=34

126 LET N(2)=56

130 LET N(3) =78

206 PRINT N{2), N(1), N{3), N@

This gives:

0 0 0 0
56 34 78 12

as output. Nothing exciting yet, we could have done the sante with
ordinary number variables, but notice the DIM statement in Jine 10,
which is saying ‘make room for a single dimension array containing
four elements and set them alt at @ to begin with’. Each member of
an array has the single letter title of the array (N in this case)
followed by the subscript number in brackets, which shows which
member it is, €.g.

X(3@) is the thirty-first member of the X{n) array (remember X0y,

We don’t have to use all the members of an array, though there isa
smal! waste of variable space if we don't do so.

Arrays begin to look a bit more promising when we use them in
FOR/NEXT loops. Here's a program to illustrate the point.

1% DIMS(Im)

20 DIM C(15)

108 FOR|=0TO 15
110 LET S{y=)*"*2
120 LET C(y=J**3
130 NEXT

300 PRINT “NUMBER’, “SQUARE", "CUBE"
310 PRINT

320 FORj=0TO 15
330 PRINT §, SOy, CH
34 NEXT

This time we have used the FOR/NEXT control variable) to create

74

two arrays S()) and C{J). We have printed the two arrays, and they
are still available for use later in the program.

Arrays of Words

Unfortunately we do not have arrays of string variables available in
our 4K ROM BASIC, but we can handle an array of single characters
by using their cade numbers, In this program we INPUT any word,
split it into individual letters, and store their code numbers in an
array. We also put the original word into a dummy variable (B) in
case we need it later, and make a note of the number of lettersin the
word (N}

20 DIM CEH)

100 PRINT “TYPE IN ANY WORD"’
1P INPUT A%

120 LET 8%=A%

26 FORJ=1TO 3¢

210 LET C{y=CODE(AS)

228 LET AS=TLY(AH)

230 LET N=]

240 {FCODREAS =1 THEN GO TO 350
3G NEXT)

Now we gan print out the letters of the original word in various
- ways. Try this:

358 CLS

38% PRINT B%

399 PRINT

A0 FORK=1TON
410 PRINT CHRE(C(K)
4200 NEXT K

Notice that in this second loop we are using CiK) to call for the
members of the array. it is only the C and the number in the bracket
which matters - how the number gets there does not matter. Try
varying the punctuation in line 410 to change the printout, and then
see if you can predict how this will print your name:

41¢ PRINT CHR$ (CIN-K+ 1)+ 128}

Finally, here is a useful program to pick the items out of an array at
random. If vou tack it on to the last program (lines 20 to 3¢0) it will
write an anagram of your original word and invite a second player
to guess it

30 LETL=0
356 CLS
380 PRINT “ANAGRAM'
39¢ PRINT
400 LET X=RND(N)
420 IFC(X)=1THEN GO TO 409
43¢ PRINT CHRE (CX)): ™
440 LET Le=l +1
45¢ LETCOO=1
469 1F <N THEN GO TO 484
500 PRINT
51 PRINT
5260 PRINT
530 PRINT "MAKE A GUESS AT THE WORD™”
546 INPUT C$
556 PRINT
el PRINT C$;
576 1F C$=B% THEN GO TO 600
580 PRINT 7 IS WRONG. ANOTHER GUESS?”
59¢ GO TO 540
600 PRINT IS RIGHT. WELL DONE”’

The program is best explained by the flowchart on the next page.

Here are a couple of exercises on arrays.

Exercise 21.1. Moving Average

The statistician’s delight! Your program has got to allow the input of
six items of data one by one — they could be monthly sales figures,
for example. The six items must be displayed, and their average
calculated and displayed. Now we have to input a seventh item,
and since we are only interested in the six most recent items, we
have to throw out the first. Tricky stuff this, so here’s a clue — put
the seven items in an array, and then move each item one place
down in the array. You can do it very simply by using a FOR/NEXT
loos.

Now that you have your five old items plus one new one in your
array, display them, calculate the new average and display it again.
Continue with the eighth item, the ninth and so on, . . .

If you want to make the program really useful, add some lines so
that you can vary the number of items which you are averaging on
each run. Now you really have the ZX80 working for you.

76

Anagram - random sorting of an array

Cl)) is a numerical array containing N numbers. Each member of
C{)} is the code for a letter in a word of N letters,

(_start)

Let X =a
Line 404 random number
from 1to N

v

Get C(X) from
the array

A

Line 42g |Yes No

Print the letter
Line 43¢ whose code
is C{X)

|

Add 1 o the
count of
letters printed

Line 440

¥

Make C(X)
Line 458 =1

Have we
printed all
the letters?

Yes
Line 468

Stop)

77

Exercise 21.2. Simple Bulis and Caws

The Bulls and Cows program at the end of this book is rather waste-
fully programmed using numerical methods. Now is your chanceto
make a start on improving it. Write a program to do these
operations:

Generate four random digits between 1 and 6

Store them in an array

Ask the player for his guess

Input the guess as a string variable

Split the string into characters

Store their codes as another array

Compare the two arrays and score a bull for each correct digit
Print out the result

Take great care, you'll be dealing with numbers as numbers,
numbers as strings and numbers as codes of strings!

There is one way in which we can produce the equivalent of a
string array.

100 PRINT “WHICH GIRL, 1, 2 OR 32"
119 INPUT A

120 CLs

130 PRINT “GIRL NO. ;A" 1S CALLED 7;
140 GO TO 1000+ 10*A

150 PRINT AS

168 STOP

1016 LET A= ""LIZA”

1015 GO TO 158

1026 LET A% ="BETSY”

1025 GO TO 150

1030 LET A%~ ""BESS”

1035 GO 1O 150

Here the three names are firmly linked to the numbers 1, 2 and 3,
which could be members or subscripts of an array.

We Learnt These in Chapter 21
Statements

DIM X (n) — Reserves space for a single dimension numerical
array with n + 1 members, and sets all the values in the array to

0.
78

Anything else

Dummy Variables — used to keep the value of some variable
when we want to give that variable a new value.

Working with strings — producing the equivalent of character
and string arrays.

749

-

22

Just off to the Shops —
Back Soon

By now, you will have got the message that a BASIC program can be
breken down inte a number of separate operations, like the boxes
in a flowchart. Suppose we wanl to do one of these operations
several times in the course of a program, in such a way that we
cannot include it in a loop. In that case we turn the operation into a
subroutine, so that we can go and do it as often as we like. It is
traditiona!, and very much tidier, to put all your subroutines at the
end of your program. It's also a help to label them with a REMark if
you have memory to spare.

Here is a very simple program using two subroutines. We'll write
it in stages so that you can see how they work.

160 PRINT “SUBR DEMO"”

11¢ PRINT

12 PRINT “JUST OFF TO SUBR 2000
130 GO SUB 2000

200 PRINT “ON MY WAY TCO SUBR 300¢
210 GO SUB 3000

2260 PRINT

300 FOR|=2TO3

31 PRINT “LEAVING THE LOOP FOR SUBR ";1* 1009
3260 GO SUB J* 1004

330 NEXT |

(GO SUB is keyword V)

RUN it now to see what happens. Lines 10 to 120 are obeyed,
producing the printout you see. Line 136 has said, ‘go directly to
line 2000 and do whatever is there’, Since there was nothing at or
after line 2000, the program stopped there. We'll put the sub-
routines in now:

2080 PRINT “THAT WAS SUBR 200¢"
80

201¢ PRINT

300¢ PRINT I HAVE BEEN AT SUBR 3000
301¢ PRINT

RUN again - this time it executes both subroutines once, stopping
at line 3010. Still more needed — take note of this:

Every subroutine needs a RETURN.
50 we must type in:

2020 RETURN
30200 RETURN
(RETURN is keyword B)

Try again — we're nearly there. It did each subroutine twice, as
expected, then an odd one at the end, and stopped with a 7/2020
error code. What was wrong? We crashed into our subroutines —
that's what. After doing lines 100 to 330, and GO SUBing and
RETURNing according to instructions we went on to 2000 and
2010, found an unexpected RETURN at line 2020 and stopped with
a 7/n error (RETURN without GO SUB). One line:

1906 STOP

will put that right, and the program is now complete. RUN it to
make sure. The 9/100¢ error code shows that the program has
stopped at a STOP Statement in line 1000,

We have seen that GO SUB behaves in much the same way as GO
TO plus an automatic return to where it came from. Let's write
down some rules for GO SUB . . . RETURN.

(1) On GO SUB n the ZX80 goes immediately to line n {or to the

line following if no n exists). n may be a number, avariable oran
expression.

(2) The ZX80 executes the subroutine just as though it was part of .
the main program.

(31 A subroutine must include a RETURN statement, which sends
the ZX80 back to the line following the original GO SUB n.

(4) You may jump out of one subroutine into another by using GO
SUB n, but don’t do it with GO TQ, that will cause chaos!

{5y A valid and useful statement is

IF something is true THEN GO SUB n.

6) Use STOP as a fence between your main program and your
subroutines, to avoid ‘RETURN without GO SUB’ errors.

Now for asimple program to calculate the volume of a water tank.

81

One of two subroutines is called up, depending on the shape of the We Learnt These in Chapter 22

tank. .
Statements
10 LET V=0
9@ CLS : GO SUB n sends th - . "
100 PRINT “VOLUME OF A WATER TANK" : the UﬂOmSﬂu\ Mw __MQNW.MWO 10 exceute asubroutine at the end of
MWMW wm”nw wm._‘wmmz‘ When the ZX80 reaches a RETURN statement in a
: T) subroutine, it immediately goes back to the line after GO SUB.
MMW ww__uﬁ WHAT SHAPE 1S IT? STOP. muw_,m,\mwﬁ the ZX80 from crashing into subroutines after
executing t i 3
15¢ PRINT, “CYLINDER (CYL FOR SHORT)" B e mam program.
166 PRINT, “CUBE"
170 INPUT A%
180 CLS

200 F A% =CYL” THEN GO SUB 10649
210 IF A%="CUBE" THEN GO SUB 1160
2200 IFNOT V=0 THEN GO TO 300

230 PRINT “DONT KNOW ;A% SHAPE”
248 GO TO 124

300 PRINT

314 PRINT

3200 PRINT “VOLUME OF ;A8 = “;V; " CUBIC CM”
A STOP

1000 REM **VOL OF CYL**

1010 PRINT “HEIGHT IN CM? **;

1026 INPUT H

193¢ PRINT H

104¢ PRINT

1056 PRINT ““DIAMETER IN CM2*/;

10680 INPUT D

1078 PRINT D

1080 LET V=(314~(D/2)/18d0*(D/2)*H
1090 RETURN

1190 REM **VOL OF CUBE**

1110 PRINT “EDGE LENGTH IN CM?7;
1126 INPUT E

1136 PRINTEL

114¢ LFTV=E**3

1158 RETURN

It is worth noticing how, after PRINTing the prompt {e.g. in line
111¢0) we PRINT the INPUT value on the same line.

82
83

23

It’s Ever so Logical

We used a lot of logic in Chapter 9, with IF . .. THEN and NOT.
There's much more to come!

Here is a picture of a water tank with some weird plumbing; there
are four water taps labelled A%, B$, Y$ and Z$.

YgE
AZ B3

Z3

It's a chemical engineering problem, in which we have to write a
program to ring an alarm bell to tell us when we have left atap open.
Let’s deal with A$ first:

16 PRINT “SET YOUR TAPS NOW’
20 PRINT, “O=0OPEN S=SHUT"”
30 PRINT

84

40 PRINT “A$ 152 ";
50 INPUT A$
60 PRINT A$
200 1IF A%="Q" THEN GO TO 1000
500 PRINT
510 PRINT “EVERYTHING O.K.”
60 PRINT
61¢ PRINT “PRESS N/L FOR MORE OR $ FOR STOP”’
620 INPUT N$
630 IF N$="'S" THEN STOP
640 CLS
650 GO TO 16
1000 PRINT
1010 PRINT “CLANG-A-LANG"
1020 PRINT
1030 PRINT “WATER RUNNING AWAY"’
1640 GO TO 660

RUN it, and open and close A% to make sure you get the right
answers. Now we'll add B$:

70 PRINT ~B§ 152 "
80 INPUT B¢
90 PRINT 8%

We need the equivalent of line 28 for B$, but wait . . . we can
include itin fine 200, With A% and B% we have an either/or situation,
only one of them needs to be open to ring the alarm. Change line
208 to read:

200 1FAS=07 ORBS="0" THEN GO TO 1406

Did it work? Like a charm! The alarm rings if either A or B$ is open
{and note that it also rings if both are open).
Now for Y$ and Z%. We'll write in the inputs first:

1900 PRINT “Y§ 152 7;
110 INPUT Y3
120 PRINT Y$
130 PRINT “7¢ 157"
140 INPUT 7%
1560 PRINT Z9$

Now have a look at the right hand pipe. What happens if Y$ is
opened? Precisely nothing! The same applies to Z9. Itis a ‘belt and
braces’ situation, because both Y$ and Z$ must be open for the
alarm to ring. Type in the test for this occurrence:

210 F Y$="0" AND Z$="0" THEN GO TO 1¢d¢

85

RUN the program and test it, and then combine fines 20¢ and 21¢ in
this new line 200

200 IEA$="0" ORB$="0" ORY$="0" AND
Z¢="0" THEN GO TO 1906
line 216 deleted)

which works just as well. There is a flowchart for this program
opposite.

Priorities

These long logical statements need very clear thinking. They
depend on the fact that the ZX80 tests all the statementsin a specific
order:

NOT thigher priority)

AND

OR {lower priority)
This is rather like the performance of the arithmetical operations in

a fixed order (Chapter 8). Again we can change the order or
emphasise it, by using brackets. For instance, this line:

200 IF A$=""0" OR B$="0" OR (Y§="0" AND Z%="0")
THEN GO TO 1006

has exactly the same effect as before, but is perhaps easier to
understand.

Exercise 23.1. The Water Tank

We are scrapping our water tank (never did like that plumbing
system!) and putting in a new one with one outlet pipe {branched}
fitted with three taps, A%, B$ and C$. Change the input lines to fit
these three taps, and then type in this logic line:
200 F AS=""0" AND (8§="0" OR C$="0") THEN GO TO
1000

RUN the program with various combinations of open taps and
deduce the new layout of pipes and taps.
Exercise 23.2. The Cashbox

Our town council is run by two pairs of brothers, Bob and Tom
jones, and Bill and Dick Brown. The town funds are in a farge steel

86

Water tank — is the water running away?

Is tap Yes
é

‘Everything
O.K’

Y

‘Ring the
alarm’

chest, and since the two families trust each other not one inch, they
fixed it with four combination padiocks, one of which could be
opened by each man.

This turned out to be highly inconvenient since they were hardly
ever present all at once. So, they called on the logical town
blacksmith to work out a system of hasps and padlocks, so that the
chest could be opened by either of the Jones family plus either of
the Brown family (the padlocks and combinations were
unchanged). Write a program to call the council roll and announce
whether the chest can be opened. Can you sketch the arrangement
which the blacksmith might have made?

Science of Cambridge now offer a plug-in expansion pack giving
an exira 16K of RAM (see Appendix 5}.

Logical Values

There is nothing in this last section which can not be done by the
use of IF, THEN, AND, OR and LET, so you can skip it for the present
if you wish. However you!'ll need to come back to it when you are
writing long programs and beginning to run short of RAM space.

Type this program:

19 PRINT “LOGICAL VALUES”

28 PRINT

3¢ PRINT

49 PRINT “A="";

56 INPUT A

60 PRINT A

106 PRINT

116 PRINT “LA=101S "7 A=10

1260 PRINT “(A<50) 15 ; A<G0

13¢ PRINT “(A>90) IS /; A>90

200 PRINT

210 PRINT “(A=10 AND 77 1S s A= 1D AND 77
29¢ PRINT (A5 AND 98) 1S *; A<G0 AND 98
33 PRINT “(A>90 AND 123} 1S 7 A>90 AND 123
360 PRINT

310 PRINT “(A=10 OR13)IS"; A=10 OR 13
3200 PRINT "(A<50 OR 44) 1S ; A<50 OR 44
330 PRINT “{A>90 OR 999) 1S ”"; A>90 OR 999
600 PRINT

61 PRINT

620 PRINT “PRESS N/L FOR MORE"

630 INPUT AS

640 CLS

65¢ GO TO 19

85

Now try running the program and inputting vari
. " putting various values of A t
satisfy the different conditions: ’

A=10 A<50 A9

Each of these three expressions can be true or false, depending on

what the value of A is. Look what h
16 into A appens when we putthe value of

Expression True or false Logical
when A=1(Value
A=10 Frue —1
ALSH True -
A9 False 0

We can mwmo.ﬁ.ua bine expressions fike these with a number, using
>Z\D or OR, giving effects which are shown in the program above.
Let’s summarise all these logical values.

True =—1
False =

True AND x=x
False AND x=0
True OR xom -1
False OR x=x

A useful way to use these is in a LET statement:
LET Z=(A=10) °
This is equivalent to saying:

IFA=1¢ THEN LET Z =1
IFNOTA=T0 THENLET Z=0

Similarly:
LET X = (A<59 OR 99)
which is equivalent to:

IF A<50 THEN LET X=—1
IFNOT A<5@ THEN LET X=99

Ifyour head is spinning, | suggest that you note the fact that these
logical values exist, and come back to this chapter later. It will save
you a lot of program space!

We Learnt These in Chapter 23

Logical statements NOT, AND, OR to use with our IF . . . THEN
statement. ,

8%

Priorities (NOT>AND>OR} used in working out logical

statements.
Logical values
True=-1

False =@

True AND x=x False AND x=0

True OR x=—1

50

FALSE OR x=x

24

Thanks for the Memory

Binary Arithmetic

Computers always work in binary arithmetic, in which every digit
must be 0 or 1. The ZX80 memories consist of a large number of
‘pigeon-holes’ or bytes, each containing 8 binary digits or bits. So,
one single byte can contain numbers from:

00O00D0OOCGOO {0 in decimal system)
up to:
IR R R | {255 in decimal system).

Now you see why the ZX80 character set contains 256 iterns! Each
one of them can be stored as a code number in one single byte of
memory.

Numbers need two bytes of storage:

First byte LLLELTT]

S
feast significant part of number (0 to 255)

Second byte

| |
sign of most significant part of number (0 or 256 to 32512)
number

0=+, 1=—}

Hence, two bytes will hold a number in the range +32767, already
mentioned in Chapters 7 and 8.

91

Every byte in a computer memory is numbered so that it can
easily be found and its contents inspected or changed. This number
is called the address of the byte.

ZX80 Memories

The first slice of memory consists of about 4000 bytes of read only
memary (4K of ROM). This contains the BASIC interpreter, the
character set, the operating system and monitor, all needed to run
the BASIC programs that are typed in. ROM can be read and used,
hut it cannot be changed in any way.

The next slice of memory is about 1000 bytes of random access
memory (1K of RAM), This is the part which accepts the program
and variables as they are typed in, and unlike ROM, all the contents
are lost when when the 7X80 is switched off. The layout of the RAM
is described in some detail in the ZX80 Operating Manual. The first
40 bytes contain the system variables (temporary records needed
by the ZX80, see Appendix Il of the Operating Manual}. The
programs start at address 16424, and immediately following the
program come the various spaces taken up by the variables, the
working space, the display file and the stack. As more program is
typed in, so the spaces move along to make room for it. Eventually,
the variable space or the display file spaces become so cramped
that the program stops with an error code 4/n {(no room to add more
variables) or 5/i (no more room on screen).

What’s In a Byte?

PEEK is an aptly named expression - it lets you look into any byte of
memeary and discover what is stored there. Its general form is PEEK
(n} where n is the 5 digit address of the byte being PEEKed. PEEK (n)
is a number from © to 255, and it can be used just like any other
nurnber or variable, e.g.

PRINT PEEK (n)

LET X=PLEEK (n)

[F PEEK (n} =29 THEN . ..
PRINT CHR$ (PEEK (n))

Here is an example of the use of PEEK, using the fact that address
16420 contains the position on the line of the next character to be
nrinted, and 16421 the position of the current line on the screen. [t
is a subroutine which will print a title word anywhere you like on
the screen.

92

10 PRINT “LINE NO. (1 TO 22)2"
20 INPUT L
30 PRINT “CHARACTER NO. ON LINE (1 TO 32)2”
4 INPUT S
54 CLs
60 GO SUB 1900
70 PRINT “CAT"
90d STOP
1000 IF PEEK {16421} + L =24 THEN GO TO 1430
1016 PRINT
1020 GO TO 1900

1030 IF PEEK (16420) +S =34 THEN RETURN
1040 PRINT * *';

’

1950 GO TO 1030

PEEKing into the middle of your program is no use, because it only
takes one change in a program line to shift the whole program a
Uﬁm or two along in memory. However, here is a program which
PEEKs wrm first line of a program to give the equivalent of a string
array. Type line T very carefully with the spaces, numbers and
punctuation exactly as shown.

T REM TTOM,2DICK, 3HARRY,4JOHN, 5CHARLIF
20 DIM P(5) \
50 PRINT “MAX. MARK ? /"

60 INPUT MX

70 PRINT MX

8¢ PRINT “ENTER MARK FOR FACH BOY”’
9@ PRINT

196 PRINT

210 PRINT “NAME","PER CENT"'

228 PRINT

230 FORN=1TOG5

24¢ GO SUB 1000 ’

250 INPUT M

2600 LET P(N) = M*180/MX

270 PRINT,P{N)

280 PRINT

29¢% NEXT N

900 STOP

1000 LET A=16426

1810 IF PEEK(A) = CODE(STRE(NY THEN GO TO 1106

10280 LET A=A+

1030 GO TO 1910

1100 LET A=A+1

1T LET A% = CHRI(PELKIA)

93

1120 IF A%="","" THEN RETURN
1136 PRINT A%;
1140 GO TO 1190

It's a gift for busy teachers! Line 1 contains the class list as a REM
statement. The FORINEXT loop in lines 23¢ to 299 fixes N, the
subscript number of the boy, and goes to subroutine 1080 to PEEK
the boy’s name from line 1, character by character, and PRINT it.
RETURN to the lgop, pause to input the mark, convert it to a
percentage and PRINT it.

POKEing into Memory

As well as PEEKing into memory, you can POKE your own choice of
value into any chosen memory byte. BEWARE!! POKEing into the
wrong places can upset the ZX80, so that you have to switch off to
clear the RAM. The general statement is:

POKENn, m

where 1 is the 5 digit address of the byte to be POKEd, and mis a
number between 0 and 255, the value we are POKEing.

The ZX80 Operating Manual shows a reaction timer program on
page 88, which uses the T.V. frame counter at addresses
16414/16415 and sets it to zero by two POKE statements. Here is a
program which uses the same idea to set up a tables test. You decide
how many seconds you need Lo answer each question — and if you
can get down to three seconds you're not doing badly!

19 1LET S=0

20 LETR=0

30 LETW=0

1080 PRINT “TIMED TABLE TEST”
118 PRINT

120 PRINT “HOW MANY SECS FOR EACH QUESTION?Z”
130 INPUT A

196 FOR|=1TO10

200 LET B=RND(12)

210 LET C=RND(12)

2200 PRINT

230 PRINT

240 PRINT

250 PRINT

2780 PRINT B X "G/ = ¥

280 POKE 16414,0

290 POKE 16415,0

94

300 INPUT P
318 CLS

320 iF (PEEK(16414)+ PEEK(16415)*256—-4>A50 THEN GO
TO 506

330 JFP=B*C THEN GO 1O 400

340 PRINT “WRONG'",B:"" X =B
3560 LFTW=wWx+1

360 COTO 520

406 PRINT “RIGHT"

410 LETR=R+1

420 GO TO 520

500 PRINT “TOO SLOW"

5190 LET S=S5+1

520 PRINT

530 PRINT

548 NEXT |

600 CLS

610 PRINT YOU GOT ":R;* RIGHT QUT OF 16
620 PRINT

630 PRINT

640 PRINT W, WRONG

650 PRINT,AND ;S TOO SLOW?

700 PRINT

710 PRINTPRESS N/L FOR MORE OR S TO STOP”
720 INPUT A%

725 IF A$="5" THEN STOP

730 CLS

740 GO TO10

We Learnt These in Chapter 24

Statements and Expressions

PEEK {n) to determine the contents of the memory byte at
address n.

POKEn, m to insert the value m into the memory byte at
address n.

95

25

Debugging Your Programs

Itis an achievement of note if you can write a program of any length
which runs first time without any errors. It is mw.émxm likely that there
are some errors or ‘bugs’ to get rid of before it will run properly.

Syntax Errors

Generally the ZX80 will not allow this kind of mistake. A quotation
mark left out, an odd number of brackets, a number variable
equated with a string variable, and (8] will come up and c«.m,\m::rm
fine from being entered. Note that leaving out hoth m:oﬂm:o:._ﬁm%m
is not a syntax error unless the proposed string has a space in it, it
will be entered as a variable. It is always worth keeping an eye on
the screen to make sure that lines do enter when you press
NEWLINE, otherwise you will waste time trying to tack your next
line on to the end of the previous line with a syntax error.

Error Codes

i fully
All the lines of the program may have been entered success ,
but it may stop running because of other errors. The ZX80 rm._@m you
by showing the line number which caused the crash, and telling you
what kind of error it is.

rong NEXT
:ﬁ\w_mow control variables at each end of a FOR/NEXT loop donot
match, or there is a NEXT without a corresponding FOR.
eg. 10 LET M=5
100 FOR]=1TO 16
200 NEXT M

9%

With or without line 100 this gives a 1/200 error code. If M is not
defined as in line 10, a 2/200 error code will be given.

2/n Variable not defined
Before it is used, a variable must be defined by one of these
statements;
INPUT A or LET A=n (numbers)
INPUT 8% or LET B% ="'’ (strings)
DIM C(n) {arrays, sets all members to @)
FOR D=nTO m {loop control variables)

3/n Subscript errors

Errors to do with the subscripts in an array, The most common
€rror is to try to use a subscript outside the range defined by your
DIM statement.
e.g. 10 DIMX(2) allows for X@), X(1), X(2)

200 LET Xi4) =50
gives a 3/200 error.
A{O) for Al) or A(l) for A(T) also give this error.

4/n Variable space full
This occurs at a line which is trying to define a variable as in 2/n
above, and shows that the variable space in RAM is fuil up. Mere
are some ideas to make room for more or bigger variables:

{1} Check that you are making full use of your DIM statements,
including use of the X(®) members of yvour arrays.

(2) See whether you can cut down on the number of variables —

maybe there are dummy variables which are unnecessary,

Shorten your string variables — use abbreviations,

Use only one string variable for ail your INPUT pauses.

Cut down the general fength of your program (see next

section) to make room for more variables,

Or @

—_

5/n Screen full
There are two possible remedies for this error:

(1) Reduce the screen contents {if you have the full depth of
screen available this is the only thing you can do}. You can
cut out empty or unnecessary PRINT lines, break up your
display into smaller slices by using INPUT pauses followed by
CLS, or reduce the depth of your graphics display.

(2) Increase the screen depth. If your available screen is too
small for the display you want, you'll have to chop your

program to make more room on the screen. Here are some
ideas:

97

*Remove REM lines

*(Cut out or abbreviate literal strings and string variables
*Make sure you are not wasting any variable space {see last
section}

*Look for any repetitions in your program — do these as loops or
subroutines.

6/n Arithmetic overflow
Maybe one of your final answers is too big — in this case you'll
have to change your program or limit the range of INPUT
variables. I it is an intermediate value which has gone over the
top, you may be able to juggle with the order of operations to
keep # within = 32767,

7in RETURN without CO SUB
Generally caused by accidentally entering a subroutine —
remember that you must fence off your subroutines with STOP or
something else.

Errors Which Do Not Stop the Program

You may have a program which seems to run perfectly, but which
prints out rubbish — it all depends on the instructions you have put
in! With many programs it is obvious if the output is not correct or
sensible, others are less obvious and need careful checking. 1f the
output is incorrect, you will have to find out why. Here are some
ideas:

(1) Check your program where possible by putting in data with a
known answer.

{2) Check your answers with a hand calculator.

{3) Check punctuation carefully, especially when you are having
trouble with tables of results or graphics displays.

(4) Check any conditional statements by putting in data which
first satisfies, then does not satisfy, the condition.

(5) Follow the course of your loops carefully (especially nested
loops), preferably using a flowchart.

(6) Putintemporary PRINT lines (use line numbers ending in 9 50
that you can easily spot and remove them later), so that you
can see the values of your variables at different points in the
program.

(7) Check different parts of your program separately.

(8) Put in temporary STOP statements and then use command
PRINT to find the values of your variables,

(9} Use command CONTINUE after a STOP statement to make
ﬁrm program continue running.
Check later parts of your program b i i
y using RUN n, which
starts to RUN the program at line n. RUN or RUN n clear out
all variables, so you may need to insert values for the variables

and then use command GO TO n (equivalent
does not clear variables), f ent 1o RUN n but

(11} Hfyou are Qo:._umnc_ as to what the values of your variables are,
use command CLEAR to empty the variable space completely.

{10

We Learnt These in Chapter 25

Commands

CLEAR completely clears all variables (also used as a state
€ ment).
RUN or RUN n automatically CLEAR as well, "

RUN n starts the program at line n after clearing variables.
GO TO n starts the program at line n without clearing variables.

CONTINUE (CONT, keyword T) restarts th
STOP statement. e program after a

99

Appendix 1

ZX80 BASIC in 4K ROM

A complete list of all the BASIC instructions available from the ZX80
keyboard. Although the ZX80 will accept any of the 22 wm,\éowo_m as
both commands and statements, the lists are confined to those
which are likely to be useful.
Note: m and n represent integers.

s represents a string. .

] represents a loop control variable.

A and BY represent variables.

Commands Used in Writing and Editing Programs

_ i ine (indi line pointer)
EDIT brings a line (indicated by the current ii

to the bottom of the screen for editing. Also a

useful way of clearing the bottom of the screen of

rubbish!

4> moves the current line pointer one :.:m up.

< moves the current line pointer one line down.

¢ moves the cursor one character to the wmw.

P moves the cursor one character to the right.

RUBOUT deletes the character to the ._mm of the cursor.

HOME moves the current line pointer to the position
above the beginning of the program.

LIST displays the first 22 program lines and moves the
current line pointer HOME. .

18T n displays fine n with up to 21 adjacent lines, and

moves the current line pointer to line n.
transfers a numbered and valid program line
from the bottom of the screen into the
program.

(2) causes the ZX80 to execute any command
typed on the bottom of the screen.

100

System Commands

Keyword instructions which do not form part of the program, but
are keyed in and executed by pressing NEWLINE.

BREAK Interrupts the ZX80 when it is working with a
blank screen. Error code #/n shows where the
program stopped, and any PRINT statements up
to line n are executed,

CLEAR deletes all variables.

CONT =CONTINUE. Restarts the program after STOP or

BREAK. Any screen contents up to the
STOP/BREAK line are lost,

GOTOnN starts the program at line n without deleting any
variables,
LOAD loads a new program from cassette recorder into

RAM. Some or all of the new program is displayed
when loading is complete.

NEW deletes the existing program.

PRINT prints on the screen whatever follows the PRINT
command.

RUN deletes all variables and starts the program at the
first line,

RUN R deletes all variables and starts the program from
line n,

SAVE transfers the program and variables from RAM into

cassette recorder. When SAVEing is complete,
program is displayed on the screen.

Control Statements

These are keywords which form part of the orogram and determine
the way in which the program is run.

CLEAR clears screen and deletes all variables.

CLS clears screen only.

FORJ=nTO m starts a FOR ... NEXT loop, setting the loop
control variable initially at n. If m is equal to or less
than n the loop is entered once, otherwise the
loop is entered m—-n+ 1 times.

GO SUB n jumps to a subroutine at line n, and continues
from there until RETURN is reached.
GOTOn jumpstoline n of the program and continues from
there.
101

IF.. THEN ..

INPUT

NEXT j

RET

STQOP

THEN
TO

_conditional statement IF . . . followed by THEN

plus any valid keyword, which is executed if the
condition is met. if condition not met, program
continues at the line following. Most frequently
used for conditional jumps, e.g. IF]>25 THEN GO
TO 109.

stops the program so that the user can input a
value to a numerical or a string variable.

ends a FOR ... NEXT loop. Esror if no corres-
ponding FOR] =n to m exists.

_ RETURN. Used in a subroutine and jumps back
to the line foliowing the previous GO SUB n. Error
if no previous GO SUB n.

stops the program and executes any PRINT
statements. Command CONT restaris program
with a clear screen,

see i

see FOR

Other Keyword Statements

These also form part of the program.

Numerical

ABS{n)
PEEK{n}
RND{(n)
USR(n)

the absolute vaiue of n.

the value currently stored at memory address n,
a pseudo-random number between T and n.
calls a machine code structure at address n

{machine code programs are outside th
this book), e fhescopeof

String handling expressions

CHRS (n)
CODE (s)

STRE (n)

TLS (5)

Hrmm:m&nwmﬁ which has the code n (null string if
neT),

the code number for the first character in the
string s.

Hrm. :cﬂ._mu.m_, n converted to a string so that the
.,mm:o:m string handling techniques can be used on
it

the string s minus its first character. if s is null or
has one character, TL$ (s} is the null string,

Logical Operators

DIM Aln) sets up a single dimension numerical array:
AlD), A, AD), ... AN The logi
and sets all values to 6. e logical operators, NOT, AND, OR, are used with conditional
LET assigns a value to a numerical or a string variable. statements.
eg LET A=2 LET B=3%A LET B = "XYZ" eg I[FNOTA=100 THEN . ..
POKE n,m puts the value m into the memory address n. IFA=2 AND B$=""XYZ"" THEN
PRINT prints on the screen whatever follows PRINT, IFA=100 ORB=16 THEN . ..
which may be one or more of the foliowing:
number, numerical variable, expression, fiteral .
string, string variable. Arithmetic Operators
RAND = RANDOMISE. Sets a random number as the
seed value for future RND(n) expressions. n**m n raised to the power m.
RAND n sets n as the seed value, —n the negative value of n.
REM indicates a remark, no action to be taken by the nm n multiplied by m.
computer. n/m n divided by m.
n+m n plus m.
n-m n minus m,
Expressions

These are all integral functions, which have to be typed out in fuil. Relational Operators

Generally used in programs, though they can form part of a

command. fhese are used for comparing two numbers, variables or

i02 103

expressions. = is also used in assigning a value to a variable.

n=m n equals m
n>m n is greater than m,
n<m n is less than m.

Punctuation

directs the ZX80 to PRINT the next item on wrm same line
and immediately following the item before the ; ,
directs the ZX80 to move on to the next EﬁZq zone before
printing the next item. Each screen line is divided into four
PRINT zcnes. . . .

o show the beginning and end of a literal string or a string

variable. . o
? can be used inside literal strings, but no other significance.

104

Appendix 2

Glossary of Terms

Address The number which
identifies a byte of memory.

Array A set of variables each
identified by an array name
and a subscript number, e.g.
A, A, A, ..

Back-up storage Some
method of long term storage
of programs and variables,
e.g. a cassette recorder,

BASIC Originally designed for
beginners, now one of the
most widely used high level
languages for micro-
computers,

Binary digit (Bit) One digit
from a binary number; can
only be @ or 1.

Binary number A number in
the binary system (base 2,
where all the digits are @ or 1,
instead of @ to 9 as in the
decimal (base 10) system.

Bug An errorin a program
which prevents it from doing
what is required of it.

Byte A binary number 8 bits
long, the normal storage unit
in a microcomputer memory.

Character Any item which

can be stored in one byte

and printed on the screen,
eg. A 1 ;PRINT are al

£X80 characters.

Character codes The single
byte number which identifies
each character — these may
vary fram one computer to
another,

Command An instruction
which does not form part of
the program, but which
makes the computer take
action of some kind.

Conditional jump Causes a
jump to a different part of the
program if a given condition
is met.

Crash The program stops
running because of a
program or data error.

Dehbug To find and remove
errors from a program.

Edit To select and alter any
chosen line in a program.

Enter To transfer a program
line, or a command, or some
data from the keyboard to

the computer (by pressing
NEWLINE on the ZX80).

105

Error code A signal from the
computer showing the nature
and the position of an error.

Firmware Sometimes used to
denote the interpreter
program, and other
permanent programs found
in ROM,

Flowchart A representation in
diagrammatic form of a series
of connected operations to
be done in a specified
sequence.

Hardware The physical parts
of a computer and the
surrounding eguipment, as
opposed {o programs.

High level language
Programming language made
up of a set of recognisabie
English words.

Integer A whole number
which may be positive or
negative.

Integer BASIC All calcutations
are carried out with integers,
and any decimal parts are
chopped off and lost.

K (of memory) A unit of
memory containing 1024
bytes,

Keyword A command or
statement oCccupying one
byte of memory and entered
by a single keystroke.

Literal string A set of
characters enclosed by
quotation marks and printed
literally on the screen by the
computer.

Load To transfer a program
from back-up storage to the
camputer.

Loop Part of a program which
is carried out repeatedly,

106

Low level language
Programming language which
uses machine code.

Machine code Programming
code which uses the
hexadecimal system to
represent binary numbers.

Nested loops Loops within
joops, so that the instructions
in inner loops are carried out
several times for each pass
round the outer loop.

Null string A string con-
taining no characters at all.

Numerical variable A
variable with some given
name, to which can be
assigned any desired number
value or numerical
expression.

Priority The order in which
arithmetical or logical
operations are carried out.

Program A numbered list of
instructions to be carried out
by a computer,

Pseudo-random numbers
These have an apparently

random distribution but each
number is in fact calculated
by the computer from the
previous number, and they
are therefore not truly
random.

Random access memory
(RAM)

Computer memory used by
the programmer for storage

of programs, data, and so on.

Each byte of RAM can be
read or ajtered at will.
Random number A number
drawn from a given set,
where each number in the
set is equally likely to be

drawn and the draw is not
affected by previous events.

Read only memory (ROM)
Permanent computer
memory generally used to
contain BASIC interpreter
programs, operating systems
and so on. Can be read but
not changed.

Relational operators
> (greater than}, < (less than),
= (equals), used to compare
numbers, expressions or
strings.

Save To transfer a program
into back-up storage for
future use.

Software Computer programs
and manuals, as opposed to
hardware.

Statement An instruction to
the computer which forms
part of the program,.

String variable A variable,
identified in BASIC by a
name ending in the $ sign, to
which may be assigned a
string of characters of any
kind (with minor exceptions}.

Subroutine A part of the
program to which the
computer can be directed
from any part of the main
program. When the
subroutine has been carried
out, the computer is directed
back to the line following its
original departure point,

107

Appendix 3

Programs for the ZX80

1. Graph Plotter

1% DIMX(18)
20 DIMY{16)
3¢ PRINT ““GRAPH PLOTTER"
40 PRINT
45 PRINT
5¢ PRINT “PRESS ANY KEY, THEN TYPE IN YOUR EQUATION
LIKE THIS:
120 LET Y(Jy=2*X()+ 5"
55 PRINT

60 PRINT “THEN PRESS NEWLINE, CONT, NEWLINE"
76 STOP

108 FORJ=1TO 16

¢ LET X(J) =]

120 LETY()=2*X(P=+5

130 NEXT]

499 PRINT ' Y”

580 FOR)=1TO 16

526 LETN=17-J

525 IF N<T@ THEN PRINT © 7":

530 PRINTN;"m "

540 FORK=1TO 16

5500 IF NOT Y(K)=N THEN GO TO 580

5o PRINT “X'";

576 GO TO 590

58 PRINT“ '
590 NEXTK
600 PRINT

610 NEXT]

108

620 PRINT 7, CHR${133) " nmwsvemmm— '
63 PRINT"024681111X
6480 PRINT D246

Line 620 uses 16 graphic biocks (SHIFT wi.

List of variables

X(16) ’ . .

<:m; coordinates of the points on the graph.

WA w FOR/NEXT loon counters.

N where] has the values 1t 16, N has the values 16 to
T.

Notes

This program is intended to show the forms of graphs of different
mathematical expressions for Y as a function of X. On RUN, the
program pauses to allow the user to insert his own equation. In the
example given, the equation Y =2X+5 is typed in as:

120 LETY()=2*X{)+5

Any equation which uses the ZX80 mathematical operators can be
typed in, but some juggling with constants may be needed to make
the graph appear within the scales X=01to + 16 and Y=0to +16.

It is worth noting the use of PRINT CHR$(133) in line 62¢. This
prints a character which is not available on the ZX80 keyhoard, in
this case to supply the ‘corner” where the two axes ioin.

Line 70 stops to allow the equation to be typed in. $TOP
must be followed by CONT to make the
program continue.

Lines 10¥ to 13¢ sets X and Y coordinates for each point on the
graph. Line 120 shows a sample equation.

Lines 490 to 640 draws the graph. Note that to draw the graph
the ‘right way up’,] =1 TO 16 has to be reversed
togive N=T6to 1,

Line 560 plots the points on the graph.

Lines 530 and 620 draws the Y and X axes.

109

2. Klingon Missile

164
118
126
130
140
189
190
200
210
220
230
246
25¢
2660
279
280
290
3660
310
326
336
340
A
419
500
519
526
530
5460
600
610
2000
2010
2820
2630
28560
2660
2090
2160
3006
3018
4000
4010

110

LET MX =14
LET MY =14

LET FX=0

LET FY =0

LET Q=9

CLS

LET J=14

PRINT 1y

IF J<10 THEN PRINT /7,

PRINT J;

IF MY =] OR FY =] THEN GO TO 2006
PRINT NS s
LET =1

IF > THEN GO TO 219

PRINT *“ §12345678911111X""

PRINT $1234"
IFQ=1THEN STOP

PRINT “FIRING AT WHICH SQUARE?”
PRINT “X="":

INPUT FX

PRINT FX, Y ="";

INPUT FY

LET MX=ABSIMX—RND(3})

LET MY = ABS{IMY—RND{(3)}

IE MX>T OR MY>1 THEN GO TO 660
CLS

PRINT “END OF GAME"”

PRINT 'YOU HAVE JUST BEEN EXTERMINATED"
STOP

IF MX=FX AND MY =FY THEN LET Q=1
GO TO 180

FORK=0TO 14
IFQ=1AND FX=K THEN GO TO 3000
IF FX= K AND FY =] THEN GO TO 4000
IF MX =K AND MY =] THEN GO TO 5600
PRINT "W"";

NEXT K

PRINT

GO TO 250

PRINT “POW"";

GO TO 2096

PRINT “X*":

GO TO 2060

5000 PRINT “M”;
5018 GO TO 2060

List of variables

wa coordinates of the Klingon missile.

MY

H V coordinates of your own defensive shots.
Q ‘flag’ to show that missile is destroyed.

J number of rows of graphics blocks in grid.
K FOR/NEXT loop counter.

Notes

You are at the bottom left of a 15x 15 grid, and an enemy missile is
at the top right. The missile makes a series of random moves
towards your corner, until eventually it destroys you. You have to
predict what the position of the missile will be after each move, and
try to eliminate the missile by firing shots at the predicted positions.

Lines 100 to 140 initialising the variables.

Lines 180 t0 280 drawing the 15x15 grid, and directing the
program to line 2000 to print the missile and the
defensive shots,

Line 290 stops the program when the - missile is
destroyed. ‘

Lines 300 to 340 inputting the coordinates of the defensive shots.

Lines 400 to 50¢ randomly sets new coordinates for the missife
and prepares to draw a new grid.

Lines 510 to 53¢ stops the program when you have been
exterminated.

Lines 680 to 610 sets the ‘flag’ to show that the missile has been
destroved, and returns to line 180 to draw a
new grid.

Lines 2000 to 5810 this routine prints rows in the grid which
contain the missile and/or the defensive shots,
and also indicates when the missile has been
destroyed.

1

3. Fox and Hounds

10 DIM X4

20 DIMYW)

100 FORJ=1TO4

119 LET X(h=2%)-1

126 LETY()=9

1360 NEXT]

140 LET X=4

1560 LETY=7

200 GO SUB 2000

3P0 PRINT "HOUND NO. ';

310 INPUTA

3260 PRINT A;

330 PRINT “TO WHICH SQUARE? X="";
340 INPUT X(A)

3500 PRINT X(A); ' Y="";

260 INPUT Y(A)

490 CLS

500 LETYY=Y-1

510 LET Q=RND(2)*2-3

528 FORM=1TO?2

53¢ LET XX=ABS(X+Q)

540 IF XX>7 THEN LET XX =6

558 FORL=1TO4

560 IFXX=X(L) AND YY=Y(L} THEN GO TO 590
579 NEXTL

580 GO TO 720

59 LETQ=-Q

600 NEXT M

619 IFYY=Y+1 THEN GO TO 706
620 LETYY=Y+1

630 IFYY>7 THEN LETYY=6

640 GO TO 519

78 PRINT “NOWHERE TO GO, YOU WIN'
719 GOTO82)

720 IFYY=0THEN PRINT “GOT THERE, t WIN'
800 LETY=YY

819 LET X=XX

82¢0 GO SUB 2000

830 IFY=0 THEN STOP

840 GOTO 308

2000 PRINT,” 01234567 X/

A Fox and Hounds program for the PET was published in
Computing Today, October 1980.

112

2010 FORJ=0TO7

2015 PRINT,);

2020 FORK=0TO7

2030 FORL=1TO4

2040 IF NOT (X(L) =K AND Y{L) = J) THEN GO TO 207¢
2050 PRINT L;

2060 GO TO 2130

2076 NEXTL

2080 IFNOT (X=KAND Y=} THEN GO TO 2110
209G PRINT “F’;

21086 COTO 2130

2110 IF NOT (K+J)2)*2 =K+] THEN GO TO 2125
2115 PRINT “8F;

21260 COTQ 2130

2125 PRINT

2130 NEXTK

214¢h PRINT

2150 NEXT

2160 PRINT, 'y’

217 RETURN

List of variables

=

X(4
Y{4

| W coordinates of the four hounds.

W coordinates of the fox.

> X

number of the hound to be moved.
LM FOR/NEXT loop counters.

dummy variables for the coordinates of the fox.

random +1 or -1 to determine whether fox goes left
or right.

0 =<x=

Notes

On RUN, the ZX80 prints a chess board with four numbered
hounds spaced evenly along the top row, and a single fox on the
bottom row. The fox and hounds move alternately, the fox trying to
get to the top row, and the hounds trying to stop him by boxing him
in. You move the hounds {there are no anti-cheat tests, that is up to
youl), and the computer moves the fox at random, but always

113

forwards if possible. You can make the game harder by cutting

down the number of hounds (e.g. line 18¢ FOR] =1 TO 3 and line

20360 FOR L=1 TQ 3 for three hounds). The fox is not intelligent,

that needs more memary than you have got.

Lines 100 to 150 sets start coordinates for hounds and fox.

Line 20¢ GOSUB to print the board with fox and hounds.

Lines 300 to 360 picks a hound and moves it to a chosen square.

Lines 500 to 640 fox tries all possible legal maves, first the two

: forward ones, then backwards. He stops on any

square not occupied by a hound.

Lines 700 to 710 fox has tried all squares without success and so
loses the game.

Line 720 fox has reached the top row (Y =@ and won the
game. :
Line 846 back to Line 3¢ for another set of moves.

Lines 200@ to 2178 subroutine to print the chess board with four
hounds and a fox.

Lines 2830 to 207¢ hound printing loop.

Lines 2086 to 2106 printing the fox.

Lines 2110 to 2125 printing alternate black and white squares.

4, Fruit Machine With Optional Nudge

10 DIMWI(3)

20 RANDOMISE
¢ FORF=1TO3
110 LET W())=RND{&)
12¢ GO SUB 5006

125 PRINT

130 PRINT “HIT KEY € TO CHANGE LAST WINDOW OR

NEWLINE TO GO ON TO NEXT”

146 INPUT A%

1580 IFAS=" " THEN GO TO 300

160 IFA%="C" THEN LET W{H =W + RND)
176 IFW{i>6 THEN LET W{J) =W()—6

180 CLS
199 GO SUB 5000
195 PRINT

200 PRINT "HIT NEWLINE TO OPEN NEXT WINDOW”

218 INPUTAS
228 IFAS=" " THEN GO TO 309

306 CLS
31¢ NEXT}
390 PRINT

400 PRINT “ANOTHER GO? PRESS NEWLINE"
410 INPUT A%

420 IFA$=" " THEN GO TO 44p

43¢ STOP

446 CLS

4503 CLEAR

460 COTO 19

5G0¢ PRINT ‘00000000 COQ00000 00000000
5318 PRINT 0 00 00 g
502¢ FORK=1TO3

5030 GO SUB (5500 + 10*W(K))

5340 NEXT K

5050 PRINT

506¢ PRINT 0 00 00 o
507¢ PRINT /00000000 00000000 00000000 '
5880 RETURN :

5500 PRINT 0 o

5505 RETURN

5519 PRINT 0 BELL 0O
5515 RETURN

55260 PRINT “0 APPLE 0
5525 RETURN

5530 PRINT “0 CHERRY 0 *';
5535 RETURN

554(0 PRINT “C PEAR 0 ',
5545 RETURN

55500 PRINT “0 STAR 0 '
5555 RETURN

556§ PRINT “0 ANCHORO "
5565 RETURN

List of variables

W(T to 3) three random numbers to select “ruits’ for each
window.

__A w FOR/NEXT loop variables.
AS

INPUT string variable to allow the player to choose
branches and to make the program continue after a
pause.

Notes

On RUN the program prints three windows, with a ‘fruit’ in the first
one. The player has the option of changing that fruit with a ‘nudge’,

115

or going on to open the second window. Again, when the second

fruit is displayed, the player can change it if he wishes, and likewise

the fruit in the third window. The ohject is of course to get three

fruits the same.

Lines 100 to 310 a FOR/NEXT loop — the program goes round
the loop three times to deal with the three

windows.
Line 110 generates a random number from 1 to 6.
Line 12¢ sends the program to subroutine 500¢ to print

windows and fruits.

Lines 130to 150 gives player the option of nudging the last
window to change the fruit.

Lines 160 to 199 routine to change the last fruit.

Lines 200 to 220 pause to let player see the windows and then
maove on to the next,

Lines 390 to 460 offers the player another go. Note line 45@
CLEAR to empty the windows before returning
to line 16 for the next try.

Lines 5300 to 5565 subroutine to print windows and fruits,
controlied by the three random numbers W{J).
Note that the window frames are made up of
0s, but any graphic blocks may be used.

5. Tables Test

18 RANDOMISE

9 LFTTR=0

100 FORJ=1TO 16

110 GO SUB 5000

1260 PRINT

13¢ PRINT “HHT NFWLINE FOR NEXT QUESTHON"
140 INPUT A%

150 NEXT)

166 CLS

1700 PRINT

186 PRINT “YOU GOT ;TR RIGHT QUT OF 19
190 PRINT

200 PRENT “HIT N/L FOR 10 OR S TO STQP”

210 INPUT A%

2200 IFA%="'S" THEN STOP

230 GO TO 9

5000 LET X=RND(12)

5019 LFT Y=RND{13)-1

5200 LET Z=X*Y

116

5030 LET B=RND{(4)

5040 CLS

5350 PRINT

5860 GO TO 5100+ 208

5120 PRINT X;* TIMES 7Y EQUALS ¢/
5130 GO TO 5306

5140 PRINT X" X 'Y = 2

5150 GO TO 5300

5160 PRINT Z;' DIVIDED BY ;X" EQUALS 777
5170 GO TO 5400

5180 PRINT X" INTO ":Z:* GOES 2"
5190 GO TO 5400

5300 PRINT

5310 FORK=1TO?2

5320 INPUT ZZ

5330 PRINT 27

53400 PRINT

5350 IF ZZ =7 THEN GO TO 5500
536 PRINT “SORRY — WRONG*
53700 NEXT K

5375 PRINT

5380 PRINT X, XY = ', Z

539¢ RETURN

5400 PRINT

5410 FORK=1TOQ?2

5420 INPUTYY

5430 PRINTYY

544G PRINT

5450 IFYY=Y THEN GO TO 5500
5460 PRINT “WRONG THAT TIME"’
547¢0 NEXTK

5475 PRINT

5480 PRINT X;" INTO ", Z;" GOES Y
5499 RETURN

5500 FK=T1THEN LETTR=TR+1
5510 PRINT “CORRECT"

5520 RETURN

List of variables

TR total of right answers.
J. K FOR/NEXT loep counters.
A INPUT null string variable to continue after a pause.

117

XY the two random numbers which are the basis of each
guestion,

Z the product of X and Y.

B arandom number from T to 4, used to select the form of
the question.

Y4 INPUT answers to the multiplication questions.

YY INPUT answers to the division questions.

Notes

On RUN, the program prints a muitiplication or division sum based

on the multipiication tables up to twelve, and the user has to type in

the answer. If wrong, he is given one chance to correct it, after
which the correct answer is shown. After nine more guestions, the
total of first time correct answers out of ten is shown.

Lines 180 to 150 FOR/NEXT loop sends the program ten times (o
subroutine 5000 for a question and answer.

Lines 16010 220 display the number of correct answers out of
ten, and offer the chance of another ten
questions.

Lines 5006 to 5020 set up the multiplication sum on which each
question is based. Note that X can not be ¢, this
avoids questions in which a number is divided
by zero.

Lines 5830 to 5060 controiled by a random number, send the
program to one of the four possible forms of
question.

Lines 5120 to 5199 contain the four different forms of question, two
multiplication and two division.

Lines 5310 to 3390 deals with answers to multiplication sums.
Stops to let the user insert his answer, tests it,
allows another try if wrong, and then prints
correct answer and returns.

Lines 5400 to 5490 do the same funciion as above, in this case for
division sums.

Lines 5500 to 5520 signal correct answers and count them,

6. Throwing a Single Dice

18 RANDOMISE

20 CLEAR
30 DIMY(6)
118

40
118
120
130
150
160
176
180
19¢
200
220
236
240
250
26@

27¢

286

300

310

320

9@
1060
1619
1620
1030
1050
16060
2060
2016
2020
2038
2040
2450
2060
2470
2080
2090
2100
2116
2120
2134
2144
21560
2160

CLS
PRINT “DICE THROWING”

PRINT

PRINT

PRINT “HOW MANY DICE THROWS?'
INPUT A

CLS

PRINT A;* DICE THROWS'’

PRINT

GO SUB 1060

PRINT

PRINT

PRINT “D0O YOU THINK THE DICE 1S FAIR?”
PRINT

PRINT “"PRESS NEWLINE TO PUT THE RESULTS ON A BAR
CHART"”

INPUT A$

GO SUB 2000

PRINT “PRESS NEWLINE FOR ANOTHER GO
INPUT A

IFAS=""THEN GO TO 29

STOP

FORJ=1TO A

LET X =RND(®)

LET Y{X} = Y(X)+ 1

PRINT X;7 "

NEXT |

RETURN

CLS

FORJ=1TO 18

LET N=19—]

IF N<10 THEN PRINT 7'

PRINT N;* 7,

FORK=1TO 6

IF NOT Y(K)>N~T THEN GO TO 2(9¢
PRINT “T":

GO TO 2106

PRINT * 7'

PRINT ** *':

NEXT K

PRINT

NEXT |

PRINT” 12345 6"

PRINT ** [DHCE THROW'”

RETURN

119

List of variables

Y{(6) The number of times that each dice throw result (1 or 2
or 3. .. etc) has turned up.

A number of dice throws INPUT by the player.

A% null string variable to move the program on after a
pause.

], K FOR/NEXT loop couniers.

X the number turned up when one dice is thrown.

N N is needed to turn the bar chart the right way up. When
j=1TO 18, Nis 18to 1.

Notes

The user decides how many times he wants to throw a single dice.

The results are shown as a collection of random numbers from 1 to

6, and these are then sorted, totalled and displayed in theformofa

bar chart. Of course we would expect a perfect dice to give an equal

number of ones, twos, threes, and so on. Perfection is not to be

obtained in this world, and all dice are subject to the laws of

probability. What the program will show is that as the number of

dice throws is increased, the result begins to approach the

‘expected’ result.

Lines 150 to 180 determine the number of dice throws {this is
limited to about 60 by the size of screen).

Lines 1000 to 1060 throw the dice the required number of times,
sort out and total the resuits, and print the
results as a series of numbers from 110 6.

Lines 2000 to 2160 prints the resuits in the form of a bar chart,
showing how many ones, how many twos, and
SO On.

7. Throwing a Pair of Dice

1% RANDOMISE

20 DIMY(12)

106 CLS

116 PRINT “THROWING A PAIR OF DICE”
120 PRINT

130 PRINT “HOW MANY TIMES?’

140 INPUTA

2806 CLS

299 PRINT “THE TOTALS ARE”

120

300 FORJ=1TOA
31¢ LET X=RND(®6) + RND(6)
320 LET YOX) = Y(X)+ 1

330 PRINT X;* 7
340 NEXT |
350 PRINT
Lsm PRINT
410 PRINT “PRESS NEWLINE FOR
PRI o A BAR CHART OF THE
420 INPUT A3
500 CLS

510 FORJ=1TO 15

520 LET N-=(16-]}*2

5330 IFN<T1THEN PRINT '

540 PRINT N--1;" "';

550 FORK=2TO 12

555 IF NOT Y(K>N-1T THEN GO TO 570
560 PRINT “M°;

565 GO TOS595

57¢ 1F NOT Y(K)>N~2 THEN GO TO 596
580 PRINT “ma’:

585 GO TO 595

590 PRINT* 7

595 PRINT ",
610 NEXTK
620 PRINT

630 NEXT

646 PRINT” 23456 78 91611127
650 PRINT “ TOTAL FOR TWO DICE”

List of variables

Y{12) Array of cumulative frequencies for scores 2 to 12.
J, K Loop control variables.

A% INPUT string variable to continue after a pause.

N Values for vertical scale of bar chart.

Notes

On RUN you are asked to input the number of times to throw the
Q_nw — up to 100 will ensure that you stay clear of ‘variable space
full” errors. You then see a display of the actual scores for each
throw, and then press NEWLINE for a bar chart of the results,

121

Lines 38 to 340

Line 31¢
Line 32¢

Lines 510 to 630

loop from 1 to the number of throws chosen,
which throws dice and prints each score.
throws two dice and adds up the two throws.
accumulates the frequency for each score from
Zupto 12.

outer | loop prints the vertical scale of the bar
chart. Inner foop prints bars and spaces. A half
block (SHIFT T) represents 1 an the vertical
scale, and a whole block (SHIFT A) represents 2.

8. Pontoon

20 DIM X(5)

30 LET M =100

a9 CLS

180 PRINT “FIRST CARD: 7/;

110 LET =0

120 GO SUB 2000

130 PRINT “YOUR BET?;

140 INPUTB

150 LETM=M-B

170 CLS

180 PRINT “YOUR CARDS '';

196 GO SUB 2004

20600 LETPT=T

219 PRINT “YOUR BET:£7:B

240 IFT>21 THEN GO TO 909

250 PRINT

2660 PRINT “NOW WHAT? T=TWIST §=STICK”
270 INPUT A$

280 IF A% =S THEN GO TO 1690
290 IFA$= T THEN GO TO 170
0 GO TO 276

g PRINT “YOU HAVE BUST”
a1 GO TO 1236

1000 LET)=

w1 CLS

1020 PRINT “YOU HAVE ;PT;” POINTS”
1030 PRINT “'BANKS TURN 7;

1040 GO SUB 2000

10560 IF T<14+RND(3) THEN GO TO 1916
1060 1F T>21 THEN GO TO 1200
1070 FPI>TTHENGOTO 1210
122

1980
1096
1206
1210
1220
1230
1240
1250
2000
2016
2020
2030
2040
2050
2060
2076
2080
2099
2106
2110
2120
2136
2144
2159
2166
2176
2180
2199
2200
2216

PRINT “YOU LOSE”,
GOTO 1230

PRINT “BANK BUST"

LEF M=M+2*8B

PRINT “YOU WIN",,

PRINT “YOU HAVE £:M
INPUT A%

GO TO 99

LET [=]+1

LETT=0

LET X()) = RND(13)

LET XX =0

FORK=1TOQ|

LET X = X{(K)

[FX>1 AND X<11 THEN PRINT X,
IFX=11 THEN PRINT “J",
IFX=12 THEN PRINT “Q)",
IFX=13 THEN PRINT K",
IFX>10 THEN LET X =10
FX>TTHEN GO TO 2150
PRINT A",

LET XX=1

LETT=T+ 10

LET T=T+X

HFNOTXX =1 AND T>21) THEN GO TO 2190
LET T=T-10

LET XX =0

NEXT K

PRINT “TOTAL POINTS ="":T
RETURN

List of variables

up to 5 cards dealt.

amount of money left,

number of cards to deal.

players bet on first card.

total points in hand.

.85“ points in player’s hand after ‘stick’.

Input string variable, “T" or “§"* gr ** 7.

marker to show presence of an ace with value 11.
dummy variable for current card.

FOR/NEXT loap counter.

123

Notes

The player starts with £100. On RUN he is dealt a card and bets on it
{make your own rules about betting limits). He then gets his second
card and is given the usual option of twisting (T) or sticking (S}. This
is repeated until he finally decides to stick (at up to 21 points} or is
bust (over 21). Assuming that he sticks, the bank now deals himself
cards until their points total is 15 to 17 {randem number) or greater,
and bank pays out on scores higher than his own.

Most of the basic rules of pontoon are cbeyed. Aces are scored
properly as Tor 11, but a pair of aces gets the scoring into a muddie.
Pontoons and five card tricks are not recognised as having any value
above their points score — the player will have to give himself credit
for these now and again. The option of buying a card face down is
not included.

Lines 100 to 15¢ deal the first card and accept a bet on it.

Lines 170 to 910 deal a second card, and then further cards as
requested by T, display cards and points score
each time. Test for ‘bust’, and on the command
S pass the program on to the bank’s turn,

Lines 1006 to 1250 the bank deals himself cards, deciding whether
or not to stick according to whether his points
score is below the random number 15 to 17, At
the end of his deal, the banker may he bust or
have a lower points score than the player — in
these cases the player wins., lf the bank’s score s
equal to or above the player’s score, the bank
wins.

tines 2000 to 2210 each time this subroutine is entered, itdeals one
more card, displays all the cards dealt so far
together with the points score.

Lires 2120 to 2180 dea! with the special case of an ace, which can

be scored as 1 or 11,

9. Hog

19 RANDOMISE

20 DIMT(2)

3¢ LET f=1
106 PRINT "THE GAME OF HOG”
118 PRINT

1260 PRINT “TRY TO REACH 100 BEFORE | DO
130 PRINT

124

146
150
160
170
180
200
21d
300
31¢
320
330
34¢
350
360
370
380
394
1000
1016
1020
1636
1@40
1060
1078
1080
190
1100
1119
1120
1300
1310
1320
1406
1410
1426
1425
1439
1440
145
1460
1470
1480
1496
1500
1510

PRINT "“PRESS N/L TO THROW OR § TO "
PRINT "“PRESS N/L FOR NEXT TURN"’ TP

INPUT A%
[F A$="99" THEN STOP
CLS

PRINT “YOUR TOTAL=""T(1)." e
RN Yo ST MY TOTAL=":T(2)
LEY Th=T)+R

PRINT

PRINT

PRINT R;" ON THAT TURN"'
PRINT

IF T(1)>99 THEN PRINT “'YOU WIN’
IFT(2)>99 THEN PRINT “/1 WIN''
[F T{[)>99 THEN STOP

LET |=3-]

GO TO 15¢

PRINT

LETR =0

IF)=2THEN GO TO 1400
PRINT “YOUR TURN''

PRINT

INPUT A

IFA$=""S" THEN RETURN

LET Z=RND{6)

PRINT 7,

IFZ=6THEN GO TO 1300
LETR=R+7

GO TO 1660

PRINT “TOO BAD . .

LETR=0

RETURN

PRINT MY TURN NOW"’
PRINT

LET Z = RND(5)

PRINT Z,

IFZ=6 THEN GO TO 1610
LETR=R+7

LET D=99-T(2)

LET E={168--T(1)}/8

LET C=(108--T(2))/E
IFCKIS5THEN LET C =14
IFCSDTHEN LET C=D

IF R>C THEN RETURN

GOTO 14208

125

161¢ PRINT “BOTHER. .. ."";
16206 LETR=0
163¢ RETURN

List of variables

T2 totai scores for player and computer.

J marker to show whose turn is in progress, 1=player,
2=computer.

A% input string variable to make game continue.

R total score for each separate turn.

Z one individual dice throw.

C,DE variables calculated to allow the computer to decide
whether to throw the dice again or stop.

Notes

Hog is a simple but compulsive dice throwing game. The player
starts, and is allowed to throw as often as he likes to build up a high
score, but if he throws a six his score for that turn is reduced to 0,
and the turn passes to the ZX80 which plays in the same way. Play

continues with alternate turns, and the winner is the first to reach a

total of 100.

Lines 180 10 390 print the totals at the start of each turn, go to
subroutine 106@ for the required number of
dice throws, print the score for that turn and
add it to the total, test the new total for a win
and then returns to give the other plaver a turn.
Line 380 gives) the values 1 and 2 alternately.

Lines 1936 to 1320 the player's turn — he has a free choice after
each throw of throwing again or stopping. Each
dice throw is printed, and the score for that turn
is reduced to O when a six is thrown.

Lines 1400 to 1630 the ZX80's turn — he throws in the same way,
and shows some ‘intelligence’ (lines 1450 to
1518) in basing his decision as to whether to
throw or stop on his own and the player’s score.

10. Submarine Hunt

16 DIMP(4)
20 DIM Q4
30 DIMX(15)

126

46

5¢

60
100
114
120
136
200
229
23¢
246
250
266
300
310
400
410
420
43¢
440
458
460
470
480
496
500
59¢
i)
610
620
630
646
650
660
670
630
704
716
726
730
74
750
860
816
1000

DIM Y(15)
RANDOMISE

LET $=4

FORK=1TO 4

LET P(K) = RNDM{8) .
LET Q(K) = RNDI8)

NEXT K

FORI=1TO 15

PRINT S;" SUBS TO SINK'

PRINT ““FIRING AT WHICH SQUARE? X = "
INPUT X{J) \
PRINTX();" Y '*

INPUT Y())

CLS

PRINT “LAST SHOT X="":X():" Y="":Y(]
FORK=1TO 8

FORL=1TO S8

FOR M=1T0 |

[F NOT (X(M) = L AND Y(M) =

I NOT (X0 (M} =K) THEN GO TO 466
GO TO 486

NEXT M

PRINT “72"";

NEXT L

PRINT

NEXT K

LET T=

FOR K=1TO 4

LET Z = (X()~P(K))* *2 4 (Y(J)—Q(K})** 2

IF Z<3 THEN LET T 1

IF NOT Z - 6 THEN GO TO 799

PRINT “DIRECT HIT"

LET S =51

IF S=@ THEN GO TO 1666

LET P(K) =19

GO TO 720

IF Z<3 THEN PRINT “1 SQUARE OFF"
IFZ=2THEN PRINT DHAGONALLY"”
NEXT K

IF T=0 THEN PRINT “MISSED"”

PRINT

NEXT |

PRINT “END OF GAME, S SUBS LEFT
STOP

PRINT “ALL SUBS SUNK IN "+J:"* SHOTS"

127

List of variables

P4 % coordinates of the four submarines.

Q4

me w coordinates of the player’s 15 shots.

5 number of submarines left.

1L,K,LM FOR/NEXT loop counters.

T indicator to show whether or not player's shot has
missed.

Z variable calculated to show whether the shot was a hit,
or within one square of a submarine,

Notes

Four submarines are hidden atrandom, each occupying one square

in an 8 by 8 grid. It is possible, but rare, for more than one

submarine to be on the same square. On RUN, you are invited to

fire at one square on the grid by entering X (squares along) and Y

{squares down) coordinates. The ZX80 then prints the coordinates

of this shot, draws the grid showing all shots so far, and tells you

whether you have made a direct hit, or are within one square of a

submarine. You have a total of 15 shots to sink all four submarines.

Lines 100 to 130 sets the coordinates of the four submarines.

Lines 230 to 310 inputs the coordinates of the present shot and
prints them.

Lines 400 to 50¢ prints the 8 by 8 grid, showing the position of all
shots fired so far. This is done by a triple nested
loop, which accounts for the time delay in
carrying out this part of the program.

Lines 600 to 740 compares the coordinates of each shot with the
coordinates of each submarine, and announces
direct hits, near misses or complete misses.

11. Bulls and Cows

0 DIM G4
20 DIM NG
5¢ LETX=0

60 RANDOMISE

100 FORJ=1TO6

116 LET Q=RND {6)

120 IF NOT NQ) =0 THEN GO TO 110

128

138 LET N{Q) =]

Em NEXT |

150 LET N==N{T)* 1000 + N(2)* 100 + N(3* i
166 PRINT ““* BULLS >z_uAmO<<m *:@ 1N
170 LET X=X+1

T8¢ PRINT

190 1F X>16 THEN GO TO 906

200 PRINT “GUESS "/;X;*"?”,

210 INPUT G

220 LET G(1) =G/ 1000

230 LET G2)=G1o0-G(1)* 16

240 LET G(3) =C/10—(G/ 10! =19
25¢ LET G4y =G—(G/10)*1d

2600 PRINT G,

300 FOR|=1TO4

319 IF GU) =N THEN GO SUB 1000
3260 NEXT)

330 FOR)=1TO4

340 FORK=1TO4

350 1F GIKy=N{) THEN GO SUB 1160
360 NEXTK

370 LET N{J) = ABSIN()}

380 NEXT]

700 1IFNOTG=NTHEN GO TO 170
786 PRINT

790 PRINT

800 PRINT “GOTITIN 7;X:" GOES”
818 STOP

990 PRINT

910 PRINT “SORRY, [T WAS "":N

9200 STQP

1008 PRINT “mm e

101¢ LET Gy =0

1026 LFT N(J) =—N(f)

1030 RETURN

1100 PRINT "z ';

1119 LET GIK) =

1128 LET N{) = ~NG)

1130 RETURN

List of variables

G4 four digits of the player’s guess.
N{6) a random array of the numbers from 1to 6.
X counts the number of guesses.

129

I, K loop control variabies.

Q random number from T to 6.
N the hidden 4-digit number.
G the player’s guess.

Notes

On RUN the ZX80 generates a 4-digit number which has each digit
between 1 and 6, and different. The player makes a guess, and the
result on the scoreboard is shown as black "bulls’ (right digits in the
right place) and grey ‘cows’ {right digits in the wrong place}. Up to
ten guesses are shown on the scoreboard, and then the number is
revealed.

| prefer this easier version, but if you want to play it the hard way,
where the digits in the hidden number may be the same, you need

to make these changes:

Delete lines 10¢ to 130
120 FOR}=1TO4
13¢ LFT N{(}=RND (6)

Bulls and Cows presents some interesting programming problems,
Lines 10¢ to 14¢ Sets the numbers 1to 6 into a random array.
Lines 160 to 19¢ counts the guesses.

Lines 200 to 218 inputs the next guess.

Lines 220 to 250 splits the guess into four digits.

Lines 300 to 320 checks each digit for a black ‘buil’”.

Lines 330 to 38¢ checks each digit for a grey ‘cow’.

Line 370 restores each hidden number digit after it has
been checked.
Line 700 loops back for ancther guess.

Lines 1000 to 103¢ subroutine for ‘bulls’. Prints a black 'bull” on the
scoreboard, erases the current guess digit so
that it can give no further score.

Lines 118@ to 1130 subroutine for ‘cows’, as for ‘bulls’ subroutine
above.

12. In the Caves
16 RANDOMISE
20 LET P=29

30 FET L=1

130

40
50
60
70
86
99
206
214
220
230
240
25
260
58
516
520
534
546
81p
820
846
850
860
870
880
906
914
944
950
1000
10160
1020
1930
1100
1119
1120
1200
1210
1220
123p
1240
1250
1300
1406
1410

DIM Q(2)
DIM R(2)
LET D=RND(9)
LET F=RND(22)
LETE=@
LET K=RND(9))
LET M= RND(23}
FOR J=M+17 TO 24
LET N=J
LET X=M*N—1
IF (X/IP)*P=X THEN GO TO 500
NEXT |
GO TO 200
PRINT “HIT N/L FOR NEXT TURN"'
INPUT A$
CLS
PRINT “PLAYER ";L;" IN CAVE ";Q(L)
LET R(L) = Q{L)
PRINT “WHICH WAY? F/B/S"”
INPUT A$
[F A= "B" THEN LET A= Q(L)*M
“w>mu:m: THEN LET A= QU*N
Ab=""S" THEN LET A=P+ 2—
LET A= A~ (A/P)*P Pra-Qu
IF A<24 THEN LET Q(L}= A
CLS
PRINT A$;"* WENT FROM CAVE ";R{L);
IF Q(L) =R(L) THEN PRINT " TO A DEAD END”
IF NOT Q{L)=R(L) THEN PRINT * TO CAVE "";Q(L)
IFNOT Q(L) =23 THEN GO TO 1106 .
PRINT ““KEY 115 *";D
PRINT GO TO CAVE ;F;” TO FIND KEY 2"
LET E=K
[F NOT (Q(L) = F AND E>0) THEN GO TO 1206
PRINT "“KEY 215 **;E
PRINT “TAKE KEYS TO CAVE ¢
IF NOT (QIL) =0 AND E>0} THEN GO TO 1460
PRINT “KEY 1+KEY 2=2"
INPUT H
IF NOT H=D+E THEN GO TO 1360
PRINT H;"" CORRECT. PLAYER "/;L;"* WINS"’
sTOP
PRINT “WRONG TOTAL. KEEP LOOKING'”
LET L=3—L
GO TO 566

131

List of variables Line 549 puts the present cave number into a dummy
variable,

P a prime number, 29 in the above program. i Lines 819 to 880 in .
puts F, B, or S and moves to a n
L number of the player, 1 or 2. . . . stays in the same one 1f & dead m:%é cave, or
Q{2) the number of the cave in which each player now is. Lines 91010 950 prints where your move has taken v
R(2) the number of the cave from which each player has just to where astakenyou from and ’
come.)
D this is Key 1, a random number from 1to 9.
F the number of the cave in which Key 2 is to be found. in the caves
. — a sample | |
E this is Key 2, set at @ until Key 1 has been discovered. ple layout of caves :
K the value which will be put into Key 2. |
&) - ; . . ;
M a random number from 1 to 23 {23 sets the number of * ne move forwards (backwards in reverse direction to arrow)
caves). |
J loop control variable. — one move sid |
€ |
N a number between M+ 1 and 24, such that X=M*N-1 ways x dead end ”
and X is a multiple of the prime number P.
AS input string variable to restart after a pause, and to input
the instruction F, B, or S.
H input variable, the answer to the sum of Key 1+ Key 2.

Notes

This program, the ZX80's answer to Dungeons and Dragons,
generates one out of a number of different networks of 23 caves.
From each cave vou can move forwards (F), backwards (B}, or
sideways (S) at will, and each move may take you into another cave
or a dead end. The game is for two players (if you want to practise
on your own, delete line 1488). Both players start at @, from which
they move sideways into cave number 2. After that anything may
happen, and each player is on his own, he knows where the other
one is, but not what moves he has made. If you are going to get out
alive, you will need to draw a map, and a sample one is shown on
the following page.

The first object is to get to cave 23, where you are given two bits of
information:

Key 1 (a number from 1 to 9).
Which cave Key 2 is in.

You have to make your way to this cave and find Key 2. The first " *Key 1 is always in Cave 23, which may be
player to get home to 0, and produce the correct sum of Key 1+ Key anywhere in the network.
2 is the winner. ; **Key 2 was in Cave 1 on this occasion, b

. . ; ! , but
Lines 200 to 268 sets up the network of caves. : be in any cave other than 23, o may
Line 530 prints the present cave number. i @ Start and finish here.
132

133

Now come a number of tests;

. .. he
i AO0 to 1030 1s the player in cave 232 if so he is given tk
Lines 10000 values invariables D and F, and Key 2 is given its

ethe i here Key 2 is hidden
ines 1100 to 1120 1s the player in the cave where Key 2 is hidden,
Hnes and has Key 1 been found vyet? If so then he is
given the value of Key 2.
Lines 1208 to 1218 s the player back home at @ and has Key 1 been
found? if so then he is asked the total of Key

1+Key 2.

Lines 1220 to 1300 Is the total of Key 1+Key 2 correct? If so the
player wins,

Line 1400 changes from one player to the other.

Line 1419 loops back to line 50¢ for next move.

13. Multiples
10 PRINT
26 PRINT

3 PRINT “CHQOSE A NUMBER BETWEEN ¢t AND 99;
Al INPUT NN

56 CLS

60 PRINT “MULTIPLES OF ";NN; B

760 1F NN =0 THEN PRINT ~ (ONLY Ozm:“

80 IFNN=1THEN PRINT " (EVERY ONE)'’;)

9f) IF NN=2 THEN PRINT ~ (EVEN zczmmmg_\ ;
108 IF NN=5 THEN PRINT “ {IN 2 COLUMNS)Y";
P10 IF NN=10 THEN PRINT “(ALL IN 1 COLUMN)"";
1266 PRINT

130 PRINT

154 FORJ=HTO9

0 FORK=0TO9

21 LET N=10%}+K

wﬁm IFNN=0AND N=§ THEN GO TO 2000

220 IFNN=§THEN GO TO 230

225 IFAN/NNIENN=N THEN GO TO 1008

230 PRINTN;

240 IF N<10 THEN PRINT * */;
256 PRINT " 7';

260 NEXTK

276 PRINT

280 PRINT

290 NEXT)

134

300 PRINT “ANOTHER NUMBER?”;
310 GO TO 40
%) STOP
1000 LET A=CODE(STRS(N))
1018 LETB =CODE(TLS(STRE(N)))
1030 IFB=1THEN LET B=0

1040 PRINT CHRS(A +128);CHRS(B + 128):
1050 GO TO 250

2000 PRINT CHRE(156);CHR$(128);
2010 GO TO 250

List of variables

NN chosen number for multiples.

I, K loop control variables.

N current number in the number square.

A, B codes of the two digits of the number to be printed in
inverse,

Notes

You are asked to input a number between f and 99. The program

then prints out a ¥ to 99 number square in which ali the multiples of

your chosen number are printed in inverse, A few relevant

comments are thrown in for good measure.

Note that § times any number equals 6, so that has to be shown

as a multiple of every number in the square.

Lines 150 to 290 print the number square,

Lines 215 to 220 make special provision for 6.

Line 225 tests each number in the square for divisibility
by the chosen number.

Lines 1000 to 1056 routine for inverse printing of one- or two-digit
numbers.

Lines 2000 to 201¢ inverse printing of {.

14. Number Base Changing — Base 2 / 16

10 LET P=—1
20 LET D=0
30 DIM B(8)
40 LET X =0

135

80

a9
106
119
120
130
146¢
150
166
170
200
210
226
236
244
270
280
390
316
315
3260
336
340
379
38p
390
400
500
516
520
680
610
650
660
670
680
708
719
720
730
740
750
sho
816
a2¢

136

PRINT

PRINT

PRINT

PRINT)
PRINT “WHATS THE NEXT NUMBER BASE
PRINT ,“2 OR 162"

INPUT B

CLS

IF B=2 THEN GO TO 500

IFNOT B=10 THEN GO TO 130)
PRINT “ENTER DECIMAL NUMBER, UP TO 255
INPUTN

CtS

PRINT

PRINT “DECIMAL NUMBER ="";N

PRINT

PRINT “BINARY NUMBER="";

LET F=128

IF N/F=9 THEN GO TO 370

LET X=1

LET N=N-—F

PRINT 1;

GO TO 380

IF X=1 THEN PRINT ¢;

LET F=F/2

IFF=0 THEN GO TO 10

GO TO 319

PRINT)
PRINT “ENTER BINARY NUMBER,UP TO 8 BITS
INPUT A%

CLS y
PRINT “BINARY NUMBER ="";A$%
FORJ=1TO8

LET B()) = CODE(A$)

LET A% =TLE(AS)

NEXT |

FORJ=#TO 7

LET N=8-]

IF B(N) =1 THEN GO TO 75¢
IFB(N) =28 OR BN} =29 THEN LET P=P+1
IF B(N)=29 THEN LET D=D=+2**p
NEXT]

PRINT

PRINT “DECIMAL NUMBER=":D
GOTO 19

List of variables

power variable for calculating decimal numbers.

decimal number calculated from a binary number.

array of up to 8 binary digits, used to calculate D.

choice of base (2 or 10) for the input number.,

input decimal number, to be changed to binary.

power of 2, used to calculate binary number from a

decimal.

A% input binary number, up to 8 bits, to be changed to
decimal.

loop control variable.

‘flag’ to suppress the printing of 0s at the start of a binary
number,

MZW®EWQOT
&

2

Notes

You choose to start with a decimal or binary number, and the

program converts this into the corresponding number in the other

base. As written, this program is limited to 8 bits maximum in
binary, or 255 maximum in decimal.

Lines 300 to 340 ifthe decimal number is divisible by the present
power of 2, subtracts that power of 2 from the
number and prints a binary digit 1.

Line 370 if the binary number has been started, and if the
decimal number was not divisible by the
present power of 2, prints a binary digit §.

Line 389 reduces to next lower power of 2.
returns to start when units digit has been
printed,

Lines 510 to 680 inputs a string representing a binary number of
up to 8 bits, and splits this into an array of 8
character codes.

Lines 700 to 750 examines the 8 characters in reverse order.

Line 729 ensures no action if character was a null string,
that is, no binary digit was present.

Line 730 increases to next power of 2 if a binary digit (¢ or
1) was present.

Line 748 increases the calculated decimal number by the

present power of 2 if the binary digit was 1.

137

Appendix 4

Sample Answers to
Exercises

Note that these are sample answers only — your own answers may
be different but equally correct.

Exercise 5.1

1) PRINT “THREE LINES GONE, ONE LEFT”

Exercise 5.2

The keyword is NEW

100¢ PRINT “SINCLAIR ZX80 MICROCOMPUTER”

2000 PRINT .
3 PRINT * MADE BY SCIENCE OF CAMBRIDGE

Exercise 6.1

A" is a literal string (see Chapter 4}, m.rg so the ZX80 will print the
letter A instead of the value of the variabie A.

Exercise 6.2. Fxchange rates
19 LET L=275
20 LET B=69*L
30 PRINTB

138

40 PRINT “BELGIAN FR. FOR £
58 PRINT L
100 PRINT
118 LET B1=5382
126 LET L1=B1/69
130 PRINT L1
148 PRINT *“£ NEEDED FOR *
150 PRINT B1

168 PRINT “ BELGIAN FR."

Exercise 7.1. Miles per galion

10 LET M=258

20 LETG=8

30 LET MPG =M/G

40 PRINT “PETROL MILEAGE — IMPG MUPL.GL

Result is 32 M.P.G., or 32.25 M.P.G. with a calculator,

Exercise 7.2. Farnily transport

16 PRINT “NAME","COLOUR”,"MAKE"" “TYPE"
20 PRINT ‘

30 PRINT “DAD”, WHITE”, "AUSTIN,“CAR"’

40 PRINT YJOHN, "GREEN", “TRIUMPH",“BIKE""
50 PRINT “MUM”, BROWN, K", *'SHOES'’

Comma spacing can give troubles. Try changing line 30 to give DAD
a VOLKSWAGEN.

Exercise 8.1

PRINT 36*90/54 gives the correct answer (60).
PRINT (730/25y*45 gives the answer 1305. The correct answer is
1314, the small error being due to integer BASIC.

Exercise 8.2. Temperature conversion

10 LET F=77

20 LET C=(F-32)*5/9

30 PRINTF; “ DEG. F="":C;"" DEGREES ("
(Answer: 25 degrees C)

139

Exercise 8.3. Volume and weight of cuboid : 49 PRINT “INPUT NEXT ITEM NOW"”’

56 INPUT X
18 LETL=14 60 LET T=T+X
20 LETB=9 ” 70 LETN=N+1 o
30 LETD-6 | 80 LET A=TIN o5 Lot BT T \
40 LETV=L*B*D . 90 ClLS
56 PRINT “VOL. OF LEAD BRICK="";V:" CUBIC CM” 160 PRINT N;** ITEMS SO FAR, AVERAGE="3A | por Prunk X
AN | 110 GO.TO.30 | o Pty
78 PRINT Note. Keep this program to practise editing i AN)
80 PRINT “WEIGHT=";W;" GRAMS" b program o p &_M_smsmy%aw_N.Eﬁﬁ,.m%}
{Answer: 756 cubic ¢m, 8316 grams) Exercise 12.1. Editing AN

Your EDITed program should give an output like this:

Exercise 9.71. Inflation
5 NUMBERS SO FAR

10 LET P=80 AVERAGE -4
20 LETY~0 INPUT THE NEXT NUMBER NOW
30 LETY=Y+1 (next year) [Lils]
_“vAs LET P=P*12/1¢ (pay increased by 20%)
5¢ 1F P<1006 THEN GO TO 39 mewwv_oomu when P is 1000 or | Exercise 14.1. Savings
60 PRINT v\ﬁﬁ\ ISE \wvh PER WEEK AFTER 10 LETTS—0
70 PRINTY;" YEARS > 20 FORM=1TO 12
(Answer: £1011 per week after 14 years) 3% PRINT
ms PRINT “"HOW MUCH THIS MONTH?"
Exercise 9.2. Chess prize Mm M/Mmc.ﬁ >
70 LETTS=TS+§S
M% wm MHM 80 PRINT “£7;TS;"" SAVED IN ";M;"* MONTHS’”
iy 9% PRINT
30 LETTC=1
¢ 100 IF TS>99 THEN PRINT “SEND FOR YOUR ZX80 NOW*”
50 LETC=(C*2
60 LETTC=TC+C
70 IFS<15 THEN GO TO 46 . bxercise 14.2. Compound interest
80 PRINT “TOTAL="";TC;"”" COINS ON "";S;"" SQUARES"
The answer is 32767 coins on 15 squares, so one more square 10 LETC=100
would cause an arithmetic overflow. ; 20 PRINT “£106 AT 9 PER CENT INTEREST""
3¢ PRINT
40 PRINT “YEAR",, “CAPITAL"
Exercise 11.1. Running average : 50 PRINT
60 FORY=1TO7
10 LETN=0 . 70 LET C=C*109/160
20 LETT=0 : 80 PRINTY,.C
30 PRINT . 99 NEXTY

140 4

txercise 15.1. Number square

180 FOR|=0TC9

19 FORK=0TO9

120 IF]=0 THEN PRINT ",
130 PRINT 10 +K;

140 PRINT ' '

156 NEXTK

Ted PRINT

70 PRINT

180 NEXT)

Exercise 15,2, Chesshoard

— 1 FORI=1TO 4
20 PRINT
3 PRINT

4 FORK=1TO 4
ﬁme PRINT "W B "';
L6l NEXTK

70 PRINT

75 PRINT

80 FORK=1TO4
_.;»@e PRINT “BW "
19060 - NEXT K
110 NEXT)

Exercise 16.1. Songwriter

100 LET A%="" MEN WENT TO MOW"’
11¢ LET B$="WENT TO MOW A MEADOW"’
120 LET C$% =1 MAN AND HIS DOG”

13¢ PRINT “HOW MANY MEN NOW (1 TO 12y 27
140 INPUT M

208 CLS

216 PRINT M:A%

22¢0 PRINT B$

23¢0 PRINT

240 FORJ=0TO M-2

250 IF M=1THEN GO TO 286

260 PRINT M= MEN''

278 NEXT |

2860 PRINT .CY

142

29¢
300
316
320
330
340
350

PRINT
PRINT B$
PRINT
PRINT
PRINT
PRINT

GO TO 130

Exercise 16.2. Form filling

100
110
120
130
140
150
160
170
180
196
200
210
226
230

PRINT “"PLEASE TYPE IN YOUR SURNAME NOW'”
INPUT S%

PRINT “NOW YOUR CHRISTIAN NAME"’
INPUT C$

PRINT “YOUR AGE IN YEARS 77
INPUT A

PRINT "WHERE DO YOU LIVE ?

INPUT W

CLS

PRINT

PRINT C8;" ;58,15 ", A;" YEARS OLD"’
PRINT “AND LIVES AT ";w$

PRINT

PRINT “THANKS ;%

Exercise 18.1. Penny tossing

10

26

30

40
100
10
120
130
146
150
179
180
190
200
219

RANDOMISE
LETS2=0

LET §3=0)

LET S4=¢

FORI=1TO 108

LET S=RND(2) + RND(2)

IFS=2 THEN LET $2 =52 + 1
IFS=3 THEN LET $3=53+1
IFS=d4 THEN LET S4=54+

NEXT | ,
PRINT “TOSSING TWO PENNIES”
PRINT

PRINT

PRINT “TABLE OF RESULTS”
PRINT

143

22¢ PRINT

23¢ PRINT “RESULT”,,,"HOW MANY"
249 PRINT ,,,"TIMES”

250 PRINT

268 PRINT “TT (SCORE 2),,52

27 PRINT ““HH (SCORE 4)”,,54

280 PRINT “TH OR HT (SCORE 3)",53

Exercise 19.1. Areas of rectangles

100 LET L=RND(15)

110 LET B=RND(1H

200 FOR)=1TOB

210 FORK=1TOL

2240 PRINT 8"

230 NEXTK

24 PRINT

250 NEXT)

26{) PRINT

300 PRINT “LENGTH="":L;" CM BREADTH ="";B;"" CM"’
414 PRINT

420 PRINT “AREA IN SQUARE CM ="
430 PRINT “JUST TYPE THE NUMBER"
440 INPUT A

450 PRINT

500 IF A=L*B THEN GO TO 600

518 PRINT “SORRY, ":A;" 1S WRONG"
520 PRINT

53¢ PRINT “"AREA OF A RECTANGLE”
540 PRINT ' =LENGTH xBREADTH"
550 PRINT,"=";L;X";:B

5600 PRINT "= "";L*B;"” 5Q CMm*”

570 GO TO 616

600 PRINT A;* SQ CM IS CORRECT”
610 PRINT

620 PRINT “ANOTHER RECTANGLE ? Y/N'';
630 INPUT A%

648 CLS

650 IF AS="Y" THEN GO TO 100

Exercise 21.1. Moving average

110 LETN=6
1206 DIM X(7)

144

3¢ LET =1

2068 PRINT “ENTER AN ITEM'
210 INPUT X()

220 LET)=}+1

230 CLS

240 [F [<KN+1THEN GO TO 200
290 PRINT “LAST *;N; ITEMS **;
300 LET S=0

319 FORJ=1TON

320 LETS=S+X{

330 PRINT X(I: *;

340 LET X{i=X(J+1)

350 NEXT

400 PRINT

419 PRINT

426 PRINT “AVERAGE OF LAST ";N;" ITEMS=""S/N
430 PRINT

440 PRINT

450 PRINT “ENTER NEXT ITEM”
460 INPUT X{N)

47% CLS

480 GO TO 300

For the general case of any number of items at a time, type in
these lines:

180 PRINT "HOW MANY ITEMS AT A TIME 7
119 INPUTN
126 DIMXIN+1)

Exercise 21.2. Simple bulls and cows

10 LETB=¢
20 DIMC(4)
30 DIM G4
W FORJ=1TO 4
110 LET C(hy=RND(6}
120 NEXT
200 PRINT “MAKE A GUESS AT MY NUMBER"
210 PRINT
228 PRINT 4 DIGITS ALL BETWEEN T AND &7/
230 INPUT G§
240 LET HE=GSH
250 FORJ=1TO 4

145

269
270
280
285
290
300
319
320
330
300
AP
419
420

LET G =CODECS)

LET G$=TLECH

NEXT |

CLS

PRINT ““MY NUMBER WAS '";
FOR]=1TO 4

IF CHRS(G) = STREWCU) THEN LET B=B+ 1
PRINT C{)}:

NEXT |

PRINT

PRINT ““YOUR GUESS WAS ";H$
PRINT

PRINT “YOU SCORED "":B;* BULLS”

Fxercise 23.1. The water tank

B3

Ag

Cc$

For water to run away, tap A% must be open AND so must either
tap B$ OR tap C$.

Exercise 23.2. The cashbox

146

1@ PRINT “ROLLCALL”

20 PRINT,”P=PRESENT A= ABSENT"

30 PRINT ,
49 PRINT “BOB JONES ¢7;

56 INPUT AS
660 PRINT A%

7@ PRINT “TOM JONES ? "
80 INPUT B%
99 PRINT B¢
180 PRINT “BILL BROWN ? .
110 INPUT C$
1260 PRINT C%
130 PRINT “DICK BROWN ? '
140 INPUT D%
150 PRINT D%

200 IF (A$="P" OR BS = “P") AND (C$=""P" OR Df= "

THEN GO TO 1608
506 PRINT
510 PRINT “CANT OPEN THE BOX, LETS GO HOME"
600 PRINT
610 PRINT “PRESS N/ FOR MORE OR S TO STOP
620 INPUT N$
630 IF N6="5" THEN STOP
640 CLS
650 GOTO 16
1000 PRINT
1010 PRINT “OPEN UP THE BOX"
1026 PRINT “TIME FOR A DIVIDEND'
1030 GO TO 6

Here is one design for the town cashbox:

ﬁ.. _.v

147

Appendix 5

The Sinclair ZX80 16K RAM
Pack

You will have discovered by now that when you start writing
complicated programs or handling a lot of data the TK RAM in your
basic ZX80 is soon used up! Science of Cambridge have recently
made it possible for you to expand your ZX80 memory simply and
economically. For about half the cost of an assembled ZX80, you
receive a small box which plugs into the edge connector at the back
left of your ZX80 (see photo). This gives you an extra 16K of RAM,
and it represents very good value by present day standards. The
expansion box gets its power from the ZX80, and the running of
your existing programs is unaffected.

Your extra 16K of RAM can be used for writing more complex
programs — it will of course give you a full size screen display until
you have used up most of the RAM (and that will take an awful lot of
programmingl}.

Another way of using the extra RAM is 1o use it to store a large
amount of data. Remember that your data is saved on tape with the
program, and will not be lost when you load it again, provided that
you do not press RUN or CLEAR {use GO TO line number instead of
RUN]).

148

The ZX80 with the 16K RAM pack being inserted

149

Appendix 6

The Sinclair ZX80 8K BASIC
ROM

An 8K BASIC ROM is available for the Sinclair ZX80. This ROM
offers many useful features not available with the standard
machine:

Floating point arithmetic with 9-digit accuracy

Logs, trig functions and their inverses

Graph drawing facility using PLOT and UNPLOT

Animated displays using PAUSE

Multi-dimensional numerical and string arrays

Cassette LOAD and SAVE with named programs

All characters, their video inverses and graphics may be entered
directly from the keyboard

Ability to drive Sinclair printer

The new ROM is a 24-pin DIL pack that replaces the standard plug-
in ROM. With this new ROM fitted, the ZX80 kevboard functions
are altered and Science of Cambridge therefore provide a new
keyboard overlay (see below) with the extra functions printed on it
Simply fix the overlay on top of the original keyboard and you are
ready to go.

150

Index

ABS, 28,103

Address, 62, 105

Anagram, 77

ANED, 103

Answers to exercises, 138

Areas, rectangles, 69, 144

Arithmetic, binary, 91

Arithmetic operators, 103

Arithmetic overflow, 98

Arrays, 74, 105

Average, moving, 145
running, 140

Back-up storage, 4, 43, 105

BASIC, 3,6, 105

Bit, 105

Binary number, 3, 105

Binary arithmetic, 91

Binary digit, 105

Brackets, 27

Branching, 58
conditional, 35
random, 62

BREAK, 38, 44, 101

Breaking loops, 38

Bug, 105

Bulls and cows, 78, 128
simple, 145

Byte, 3, 91, 105

Calculations, 26
Cashhox, 86, 146
Cassette recorder, 4
Caves, in the, 130
Chance, 61

Characters, 66, 105

Chess prize, 33, 140
Chessboard, 52, 67, 142
CIR$, 66, 71, 103

CLEAR, 101

CLS, 38, 11

CODE, 71, 103

Code, error, 80, 96, 106
Codes, 105

Comma, 23

Commands, 11, 100, 105
Compound interest, 141
Conditional branching, 35
Conditional jump, 7, 30, 105
CONT, 101

Control statements, 101
Crash, 105

Crashproof programs, 58
Cuboid, 140

Current line pointer, 13, 40

Data, 37

Debug, 105

Debugging, 96

Decimals, 18

Decision diamond, 35

Dice, throwing a pair of, 120
throwing a single, 118

Digit, binary, 105

DIM, 74, 102

Dummy variables, 73

Dungeons and Dragons, 132

EDIT, 40, 100
Edit, 105

151

Editing, 41, 141

ENTER, 105

Error code, 24, 80, 96, 106
Errors, syntax, 96
Exchange rates, 138
Expressions, 102

Family transport, 139
Firmware, 106
Flowchart, 35, 106
FOR, 46, 101

Form filling, 56, 143
Fox and hounds, 112
Fruit machine, 114

Functions, integral, 28, 102

Clossary, 105

Golf project, 65
GO SUB, 80, 101
GO TO, 30, 45, 101
Graph plotter, 108
Graphic blacks, 67

Hardware, 1, 9, 106
High level language, 106
Hog, 124

Home, 100G

IF, 80

IF statement, 7

IF ... THEN, 31, 36, 102
In the caves, 130
inflation, 33, 140
INPUT, 37, 55, 57, 102
integer, 106

integer BASIC, 18, 106
Integer variables, 20
Integral functions, 28, 102
Interest, compound, 141

K {of memory), 100
Kevboard, 10
Keywords, 10, 102, 106
Klingon missile, 110

lLanguage, high level, 3
LET, 19, 37, 54, 62, 102
Line space, 15

Lines, deleting, 16

152

LIST, 41, 100
Listing, 16
lLiteral string, 13, 533, 106
LOAD, 44, 101, 106
Logic, 84
togical operators, 103
togical values, 88
Loop, 30, 46, 106
program, 7
string input, 55, 68
Loop control variable, 46
Loops, 30, 35, 80
breaking, 38
rested, 50, 106
Low level language, 106

Machine code, 106
Mathematical operations, 26
Mathematical operators, 18
Memory, 3, 91
random access, 4, 106
read only, 4, 106
Miles per gallon, 23, 139
Moving average, 145
Multiples, 134

Negative numbers, 28
Nested loops, 50, 106
NEW, 11, 161
NEWLINE, 11, 100
NEXT, 46, 102
NOT, 31, 103
Null string, 57, 71, 106
Number base changing, 135
Number, hinary, 105
pseuda-random, 61, 1067
random, 61
square, 51, 142
variable, 72
Numbering, 16
Numbers, 72, 73
Numerical variable, 53, 106

Owperators, arithmetic, 103
logical, 103
mathematical, 18
relational, 31, 103

OR, 103

Overflow, arithmetic, 98

Pair of dice, throwing a, 120

!

PEEK, 92, 102, 103
Penny tossing, 63, 143
Pictures, 66
POKE, 94, 102
Pontoon, 122
Positive numbers, 28
PRINT, 10, 12, 101
Priority, 26, 86, 106
Probability, 63
Processing block, 35
Program, 1, 15, 106, 108

crash-proof, 58

loop, 7

saving, 43
Pseudo-random numbers, 61, 106
Punctuation, 23, 104
Pyramids, 68

RAM, 92, 106
16K, 148
RAND, 102
Random access memory, 4, 106
Random branching, 62
Random numbers, 61, 106
RANIIOMISE, 62
Read only memory, 4, 107
Rectangles, areas, 144
Relationat operators, 31, 103, 107
REM, 16, 102
Renumbering lines, 41
RETURN, 81, 102
RND, 61, 103
ROM, 4, 92, 1G7
4K, 100
RUBOWUT, 15, 100
RUN, 13, 101
Running average, 140

SAVE, 44, 101, 107

Saving a program, 43

Saving variables, 45

Savings, 141

Screen size, 68

SHIFT, 11

Simple budls and cows, 78, 145

Single dice, throwing a, 118
Software, 2, 107
Songwriter, 55, 142
SPACE, 1%
Statement, 107
Statements, 11

control, 101
STOP, 32, 57, 80, 102
Storage, -back-up, 4, 43, 105
String, 53, 70

input loop, 55, 68

literal, 53, 55, 106

aull, 57, 106

variables, 53, 55, 107
STRE, 72, 703
Submarine hunt, 126
Subroutine, 80, 107
Syntax errors, 96

Tables test, 94, 116

Temperature conversion, 28, 139
Throwing a pair of dice, 120
Throwing a single dice, 118

Te, 71, 103

TO, 46

Tossing, penny, 143

USR, 103

Values, logical, 88

Variables, dummy, 73
integer, 20
loop control, 46
number, 72
numerical, 53, 106
saving, 45
string, 107

Volume of cuboid, 29
of tank, 80

Water tank, 86, 146
Weight of cuboid, 29
Words, arrays, 75

153

