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1. Introduction 

This is the first in a series of articles on using Forth to interact with the real 
world. We will explore how to control motors of various types (such as 
servomotors and stepper motors), switch power to devices, and sense the 
environment. Each article will present a project that can be used to 
demonstrate the ideas we are going to discuss. 

In this first article, I want to lay the foundation for the future columns and 
discuss the use of the PC parallel port to control stepper motors. We will 
adopt the fantasy that we are working on some microprocessor-based control 
application and will be using the PC parallel port as a proxy for the digital I/O 
channels on our controller. To the extent possible, the code will be written in 
high level (so that we can illustrate the principles clearly), and will be in ANS 
Forth. 

2. The PC Parallel Port 

First, if you haven't already, go to your back issues of Forth Dimensions and 
find Ken Merk's article "Forth in Control," (FD XVII/2). In that article, Ken 
talks about using the PC parallel port for eight digital outputs. We will be 
expanding on that and use some of those other pins to get input as well as to 
provide output. 

A parallel port on the PC is really three address locations which, for 
conventional use, could be called #Data, #Command, and #Status. The port 
#Data is at the base address of the parallel port, #Status is at the base address 
plus one, and #Command is at base plus two. 

The base address depends upon which parallel port we are using and the 
hardware installed in your computer; usually, this address is one of the hex 
addresses 03BC, 0378, or 0278. The BIOS determines the address and maps it 
to the parallel ports at boot time. This allows an application to find out where 
the port is by simply reading the table in memory that starts at 0040:0008. 
Ken shows in his article how to get this value and set a constant containing 
the base address for the first port; we will do the same here. 
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Table One. The PC parallel port 

DB-25 Pin   Signal      Direction  Port     Bit  
 
  1         Strobe*     out        #Command  0 
 
  2         Data0       out        #Data     0 
 
  3         Data1       out        #Data     1 
 
  4         Data2       out        #Data     2 
 
  5         Data3       out        #Data     3 
 
  6         Data4       out        #Data     4 
 
  7         Data5       out        #Data     5 
 
  8         Data6       out        #Data     6 
 
  9         Data7       out        #Data     7 
 
 10         Ack*        in         #Status   6 
 
 11         Busy        in         #Status   7 
 
 12         Paper       out   in   #Status   5 
 
 13         Select      out   in   #Status   4 
 
 14         Auto_Feed*  out        #Command  1 
 
 15         Error*      in         #Status   3 
 
 16         Init*       out        #Command  2 
 
 17         Select in*  out        #Command  3 
 
 18 to 25   Ground      NA         NA        NA 

Table One shows what all the pins on the connector are for. You will notice 
that #Status port bits zero, one, and two and #Command bits five, six, and 
seven are not used. The #Command port is used as an output port when the 
port is being used for a printer, but it is actually an open-collector I/O port and 
can be used for input. The #Data port latches whatever was written to it, so a 
read from that port returns the same value that was last written to it. A single 
PC parallel port then gives us 12 output bits and four input bits, under normal 
circumstances. (Many PCs use general-purpose parallel I/O chips to 
implement the parallel port and can actually be programmed to be bi-
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directional on the pins. Unfortunately, this form of the port is not universal.) 
For this project we will only need the first four data lines and ground (DB-25 
pins two through five and pin 25). 

3. Stepper Motors 

As our first application, let us consider the control of stepper motors. Stepper 
motors provide open-loop, relative motion control. Open loop means that, 
when you command the motor to take 42 steps, it provides no direct means of 
determining that it actually did so. The control is relative, meaning that there 
is no way to determine the shaft position directly. You can only command the 
motor to rotate a certain amount clockwise or counter-clockwise from its 
current position. These "commands" consist of energizing the various motor 
coils in a particular sequence of patterns. Each pattern causes the motor to 
move one step. Smooth motion results from presenting the patterns in the 
proper order. 

Features that stepper motors provide include: 

� Excellent rotational accuracy  
� Large torque  
� Small size  
� Work well over a range of speeds  
� Can be used for motion or position control  

There are two types of stepper motors: 

� Bipolar motors, with two coils. These have four wires on them (see 
Figure One-a). They are tricky to control because they require changing 
the direction of the current flow through the coils in the proper sequence. 
We will discuss these motors further when we get to the topic of DC 
motor control.  

� Unipolar motors, with two center-tapped coils which can be treated as 
four coils (see Figure One-b). These have six or eight (or sometimes 
five) wires, and can be controlled from a microprocessor with little more 
than four transistors (see Figure Two).  

Figure One. (a) The internal arrangement of the coils for a bipolar stepper 
motor. (b) The internal arrangement of the coils for a unipolar stepper motor. 
Wires a through d are attached to the positive motor power supply. Six-wire 
motors internally connect a with b and c with d; five-wire motors internally 
connect a, b, c, and d.  

 Figure One-a           Figure One-b 
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Figure Two. The interface circuit to control unipolar stepper motors from a 
four-bit I/O port. 

  

Stepper motors vary in the amount of rotation delivered per step. They can 
turn as little as 0.72 degree to as much as 90 degrees per step. The most 
common motors are in the 7.5 degrees- to 18 degrees-per-step range. Many 
have integral reduction gear trains so that they have even higher angular 
resolution. The motor shaft will freely rotate when none of the coils are 
energized, but if the last pattern in a series is maintained, the motor will resist 
being moved to a different position. Because the motors are open-loop, if you 
do manage to mechanically overwhelm the motor and turn the shaft to a new 
position, the motor will not try to restore itself to the old position. 

There are stepper motor driver ICs available, but these can be very expensive 
(as much as $20 to $50). The sequences are relatively easy to generate with a 
couple of TTL or CMOS chips at a much lower cost. This is the approach I 
typically use for most of my real stepper motor applications, since it is a good 
compromise between parts cost and part count, and it has a low impact on my 
I/O pin budget. 

The easiest way to control a stepper motor is by using four bits of a parallel 
I/O port from a computer or microprocessor. I usually use this approach when 
experimenting or when the part count must be as small as possible. The 
microprocessor approach also has the advantage of being able to use more 
than one stepper sequence. 
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The interface to control the motor from the parallel port is just a transistor 
switch replicated four times. The transistor is there to control the current, 
which is much higher than the parallel port can sink, and to allow for the 
motor voltage to be independent of the PC power supply. The circuit in Figure 
Two can readily work with motor voltages in the range of five to 24 volts. A 
positive voltage at the transistor base (writing a '1' to the appropriate bit at 
#Data) causes the transistor to conduct. This has the effect of completing the 
circuit by hooking up ground to the motor coil (which has a positive voltage 
on the other side), so the chosen coil is turned on. 

Table Two. The parts list. 

4    TIP 120     NPN Power Darlington transistors 
 
4    10-K Ohm    1/4 Watt resistors 
 
4    1N4004      Diodes 
 
1    DB-25 Male  solder-type connector 

Switching is one of the primary uses of transistors -- we are using a power 
transistor so that we can switch lots of current (up to five amps for the TIP 
120). A Darlington transistor is really a transistor pair in a single package 
with one transistor driving the other. A control signal on the base is amplified 
and then drives the second transistor. The resulting circuit can not only switch 
large currents, but it can do so with a very small controlling current. The 
resistors are to provide current limiting through the parallel port. The diodes 
are a feature typical of circuits that handle magnetic coils, that is inductive 
circuits. In this context, the motor windings are the inductive element. 
Capacitors provide a means for the storage of electrical charge, inductors 
provide a means for storage of electrical current. The driving current causes a 
magnetic field to be built up in the coil. As soon as the drive is removed, the 
magnetic field collapses and causes the inductor to release its stored current. 
Semiconductors are particularly sensitive to these currents (they briefly 
become conductors and then become permanent nonconductors!). The diodes 
provide a mechanism to safely shunt these currents away and, thus, protect the 
transistors and the computer. We will be seeing shunting circuits of various 
types in all the devices we will consider when inductive loads are involved. 

The whole circuit can easily be built on a 1 7/8" by 2 3/4" prototyping board. 
For experimenting, it is convenient to connect the motor to the circuit via one 
or two feet of hookup wire with alligator clips on them instead of wiring the 
motor directly to the circuit. That way, a different motor can be attached to 
the circuit in a few seconds. You should also note that ground for the 
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transistors must be made common between the parallel port (say at pin 25) 
and the motor power supply. An additional wire with an alligator clip can be 
used to provide access to the ground for the motor power supply. So, on the 
motor side of the circuit we have six wires, one for each coil, one for ground 
and one for the motor voltage on the shunt diodes. The motor (positive) 
voltage supply is provided through the common coils. 

After building the circuit, connect the transistors Q1 through Q4 (via their 
current limiting resistors) to the DB-25 connector pins two through five. 
When attached to the PC parallel port, the transistors will be controlled by the 
low four bits of the #Data port. Don't forget the ground wire on pin 25! 

3.1 Stepper motor sequencing -- unipolar.  

There are several kinds of sequences that can be used to drive stepper motors. 
The following tables give the most common sequences for energizing the 
coils. In all cases, the steps are repeated when reaching the end of the table. 
Following the steps in ascending order drives the motor in one direction, 
going in descending order drives the motor the other way. 

Table Three. The normal sequence. 

Step   Q4   Q3   Q2   Q1 
 
  1     0    1    0    1 
 
  2     1    0    0    1 
 
  3     1    0    1    0 
 
  4     0    1    1    0 
 

Table Four. The wave drive sequence. 

Step  Q4   Q3   Q2   Q1 
 
 1     0    0    0    1 
 
 2     1    0    0    0 
 
 3     0    0    1    0 
 
 4     0    1    0    0 
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Table Four shows what is known as the wave drive sequence. This sequence 
energizes only one coil at a time. For some motors, this sequence gives a 
smoother motion than the normal sequence. 

Table Five. The half-step sequence. 

Step  Q4   Q3   Q2   Q1 
 
 1     0    1    0    1 
 
 2     0    0    0    1 
 
 3     1    0    0    1 
 
 4     1    0    0    0 
 
 5     1    0    1    0 
 
 6     0    0    1    0 
 
 7     0    1    1    0 
 
 8     0    1    0    0 
 

Table Five shows the half-step sequence. This sequence interleaves the 
normal and wave sequences. It doubles the angular resolution of the steps, so 
a 200-step-per-revolution motor now takes 400 steps to complete a revolution. 

3.2 The bipolar sequence. 

Although we will defer the discussion of bipolar stepper motors, for 
completeness we present the step sequence here in Table Six. These motors 
cannot be half-stepped. 

Table Six. The bipolar sequence. 

Step   C11   C12   C21   C22 
 
 1      -V    +V    -V    +V 
 
 2      -V    +V    +V    -V 
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 3      +V    -V    +V    -V 
 
 4      +V    -V    -V    +V 
 

3.3 Timing issues for stepper motors. 

Since steppers are mechanical devices, the timing of the step pulses is 
important. 

The motor must reach the step before the next voltage sequence is applied. If 
the step rate is too fast, the motor can react in one of several ways: 

� it might not move at all, or  
� it could vibrate in place, or  
� it could rotate erratically, or  
� it might rotate in the opposite direction!  

For very smooth startups, the step rate can be started slow and gradually 
ramped up to a higher rate. The reverse can be done for smooth stops.  

3.4 The control software.  

The control code steppers.seq can drive a motor with any of the above 
unipolar sequences in either direction. The code loads fcontrol.seq, from Ken 
Merk's article, to find the port and define the words to control the bits on the 
port. Several other files from the Forth Scientific Library are loaded as well: 
fpc2ans.seq loads an ANS-like layer on top of F-PC (a true ANS Forth would 
not need this), fsl-util.seq defines several utility words that are used 
throughout the Scientific Library, structs.seq loads the data structure words. 
The data structure sequence is defined to easily manage the sequence of 
values as defined in the sequence tables given in section 3.1 above. The 
sequence structures keep track of where in the sequence we are, so that there 
is no jump in the sequencing if one were to type 7 NORMAL STEPS, stopped 
to (say) read a sensor, and then continued on with another 7 NORMAL 
STEPS. This could be done with global variables instead of a data structure. 
However, the use of a data structure to contain this information is much more 
natural to extend, if the application were to require several stepper motors, 
than is the global variable approach. 

4. The Future 

In upcoming articles, we will be looking at various projects to illustrate the 
use of Forth to control and measure the real world. Please send your 
comments, suggestions, and criticisms through Forth Dimensions 
[editor@forth.org ] or directly to me at skip@taygeta.com. In the meantime, 
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re-tin those soldering irons! 

Skip Carter is a scientific and software consultant. He is the leader of the 
Forth Scientific Library project, and maintains the system taygeta on the 
Internet. For details, send e-mail. 

The relevant Forth code is available via anonymous FTP. Get these files: 
STEPPERS.SEQ, ANSI.SEQ, DYNMEM.SEQ, FPC2ANS.SEQ, FSL-
UTIL.SEQ, STRUCTS.SEQ, and FCONTROL.SEQ. Equivalent code for 
Linux systems is also available -- send e-mail for details. 

This article first appeared in Forth Dimensions XVII/5. 

Page 9 of 9Control Stepper Motors -- with Forth

2004/09/25http://www.forth.org/fd/Step.html


